• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 12
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 105
  • 72
  • 65
  • 26
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Hodnocení sfingosinu, dihydrosfingosinu a fytosfingosinu v modelech kožní bariéry / Study of sphingosine, dihydrosphingosine and phytosphingosine in skin barrier models

Kubátová, Denisa January 2021 (has links)
Charles University, Faculty of Pharmacy in Hradec Králové Department of Pharmaceutical Technology Author: Denisa Kubátová Supervisor: PharmDr. Andrej Kováčik, Ph.D. Consultant: PharmDr. Lukáš Opálka, Ph.D. Title of diploma thesis: Study of sphingosine, dihydrosphingosine and phytosphingosine in skin barrier models The stratum corneum (SC), the uppermost layer of the skin, localized in the uppermost part of the epidermis, represents the skin barrier of the organism. SC is composed of corneocytes and an intercellular lipid matrix, which is formed by ceramides (Cer), free fatty acids (FFA), and cholesterol (Chol) in an equimolar ratio. Substances from the group of sphingolipids - Cer, are sphingoid bases (for example, sphingosine (S), dihydrosphingosine (dS), phytosphingosine (P)) acylated with a fatty acid (for example, lignoceric acid (LIG)). In the lipid matrix, the metabolic products of Cer (free sphingoid bases) are also present, but their role in SC barrier functions is not clear. Some studies show that Cer with different sphingoid bases, and increased presence of free sphingoid bases, can lead to a change in the permeability of the skin barrier. This work aimed to study the effect of permeability of sphingoid bases on the model membrane permeability. Nine types of membranes were prepared; they...
72

Fused Heterocycles as Spinster Homolog 2 Inhibitors and Regio- and Stereoselective Copper-Catalyzed Borylation-Protodeboronation of 1,3-Diynes: Access to (Z)-1,3-Enynes

Burgio, Ariel Louise 15 May 2023 (has links)
Sphingosine 1-phosphate (S1P) is a lipid chemoattractant molecule. Once formed, S1P can be transported extracellularly by S1P transporters spinster homolog 2 (Spns2) or major facilitator domain containing 2B (mfsd2b). In the extracellular space, S1P can bind to S1P-specific G-protein coupled receptors (S1PR), which initiate many signaling pathways. A critical role of extracellular S1P is its ability to cause lymphocyte egress, which can have implications for inflammatory and autoimmune diseases. For this reason, there has been a growing interest in exploring potential spns2 inhibitors to further elucidate their therapeutic potential. Initial screenings confirmed that fused heterocycles, including phthalimide and benzoxazoles, demonstrated moderate inhibition of Spns2 using a HeLa cell assay. An extensive structure-activity relationship (SAR) study of these scaffolds was performed to analyze the impact of various amine head groups, regioisomers, and alkyl tails on performance. It was determined that 2-aminobenzoxazoles with secondary amines were potent inhibitors of the transporter. Additionally, the position of the lipophilic tail moiety played a large role in activity. From these modifications, SLB1122168 (2.44p) was found to be our lead compound. It was determined that (2.44p) had an IC50 of 94 ± 6 nM and was shown to be efficacious in decreasing lymphocyte count by 55% in a dose-dependent manner in both rat and mice models. The discovery of (2.44p) can serve as a novel chemical tool to investigate Spns2 biology and use it as a probe to determine the potential of Spns2 as a drug target. Organoboron compounds are useful synthetic intermediates in forming C-X, C-C, and C-H bonds. One way to synthesize these compounds is through copper catalysis. Copper is favorable to other transition metals because it is an Earth-abundant, low-cost metal that can be utilized in regio- and stereoselective reactions. Conjugated 1,3-enynes are important functional groups that iii are found in active natural products, organic synthetic intermediates, and materials. Previous methods used rare transition metals, designer ligands, or harsh acidic conditions to synthesize such compounds. In this dissertation, we developed a stereoselective one-pot copper-catalyzed semi-reduction of 1,3-diynes to produce (Z)-1,3-enynes. This method uses Cu(OAc)2, HBpin and Xantphos to successfully synthesize (Z)-1,3-enynes that were tolerated well over a broad substrate scope, including heterocyclic, alkyl, and aryl substituents. It was determined that this reaction went through a 2-boryl intermediate which was facilitated by a CuH species. / Doctor of Philosophy / Autoimmune diseases are caused by immune cells attacking healthy cells. The signaling lipid sphingosine-1-phosphate (S1P) plays a major role in trafficking immune cells, in which immune cells follow the S1P gradient from low concentrations (secondary lymphoid tissues) to high concentrations (lymph). In the case of multiple sclerosis, immune cells can attack healthy neurons that cause a myriad of symptoms. Currently, there are four drugs approved by the Food and Drug Administration (FDA) targeting the S1P pathway for multiple sclerosis. In all cases, these drugs act as S1P-receptor (S1PR) functional antagonists, which decreases the amount of extracellular S1P, which in turn decreases the immune cells in the lymph that can attack healthy cells. Unfortunately, all four drugs exhibit on-target cardiovascular side effects. To circumvent the on-target side effects seen in current FDA-approved drugs, other nodes of the S1P pathway have been assessed for multiple sclerosis. One node of interest is spinster homolog 2 (Spns2), a transporter of S1P, whose inhibition has also been shown to decrease extracellular S1P. In this dissertation, we will be assessing various inhibitors for their in vitro and in vivo properties. 1,3-Enynes are a functional group found in medicinally relevant compounds and can be used as intermediates to make more complex compounds. Current methods to make this functional group use expensive rare metals or harsh acidic conditions. We developed new methods that utilized copper, an abundant metal, and boron, an atom whose empty p orbital allows for unique reactivity. Utilizing a copper-hydride species allowed us to semi-reduce 1,3-diynes to (Z)-1,3-enynes, where water was used instead of acid to allow for the semi-reduction to occur. This reaction was shown to tolerate a wide range of substrates and gave good to excellent yield.
73

Developing Sphingosine-1-Phosphate (Spns2) Inhibitors for the Treatment of Multiple Sclerosis

Shrader, Christopher Wayne 29 February 2024 (has links)
Doctor of Philosophy / Autoimmune diseases are caused when a person's immune system attacks its own healthy cells. In a person with multiple sclerosis, their immune system becomes sensitized to the myelin sheath that covers their neurons in the central nervous system. This results in the degradation of the myelin sheath and irreversible degradation of the nerve cell axons. This damage leads to the development of several neurological impairments, such as pain, fatigue, mobility problems, and numbness. While there is no cure for multiple sclerosis, disease-modifying therapies are typically taken by patients to suppress their immune system and slow disease progression. Sphingsoine-1-phosphate (S1P) is a lipid that is important for the trafficking of lymphocytes into a person's central nervous system. This trafficking is largely due to the natural gradient of S1P which is high levels in blood but low in tissues. Lymphocytes will follow this gradient from areas of low S1P concentration (lymphatic tissue) to areas with higher S1P concentrations. Modulation of S1P levels is the mechanism of action for several FDA approved drugs as they target primarily S1P1 receptors to achieve lower levels of circulating lymphocytes. However, targeting this receptor also results in cardiovascular side effects such as first-dose bradycardia. The transporter for S1P, spinster homolog 2 (Spns2), which is upstream of the S1P receptors, is another viable target that our lab has recently been targeting. Spns2 inhibition decreases extracellular S1P levels and result in reduced lymphocytes in mice models. In this dissertation, several inhibitors were developed and assessed for their in vitro and in vivo ability to inhibit Spns2.
74

Investigations Into The Chemoselective Modification Of THAM Directed Towards Biological Applications

Calzavara, Janice L. 04 1900 (has links)
<p>Tris(hydroxymethyl)aminomethane (THAM) was a readily-available and economical amino-triol that was viewed as having a large untapped potential as a starting material. The full chemoselective functionalization and differentiation of the amino group and the three primary alcohol residues present in THAM was extensively investigated. The development of this methodology allowed for the rapid assembly of a differentiated core that lead to existing and new potential drug scaffolds.</p> <p>The discovery of a novel oxidative fragmentation and rearrangement process was made leading to the synthesis of differentiated oxazolidinone rings. This process allowed for the creation of novel chemical library situated around THAM-based oxazolidinones, as well as THAM-based 1,3-dioxanes.</p> <p>THAM was also used as a starting material for sphingosine analogs, including sphingosine 1-phosphate (S1P) and anticancer S1K inhibitors. Selective functionalization of the amine and one alcohol within an oxazolidinone ring allowed access to a new family of Linezolid-type oxazolidinones as well. Additionally, various triazole-based compounds were prepared, which allowed access to a new family of potential antifungal agents based on the lead compound Fluconazole.</p> <p>A total synthesis of the immunosuppressant molecule FTY720 was also reported, employing double Wittig-olefination protocol, from THAM. This synthesis avoided certain pitfalls that were present in previously documented literature methods. Along the pathway to FTY720, many intermediates and analogs were synthesized and tested for biological activity alongside the novel oxazolidinone compounds, resulting in interesting lead compounds for various biological applications. A UV-active FTY720 scaffold was also synthesized for potential future <em>in vivo</em> tracking of the immunosuppressant and its metabolites.</p> / Doctor of Philosophy (PhD)
75

Development of Potent Inhibitors of the Sphingosine-1-Phosphate Transporter Spns2 for the Treatment of Multiple Sclerosis

Foster, Daniel John 07 July 2022 (has links)
Sphingosine-1-phosphate (S1P) is an amino-alcohol signaling molecule produced from the intracellular phosphorylation of the lipid sphingosine. Despite possessing several identified intracellular targets, the predominant signaling functionality of S1P is derived from its activation of membrane-bound G-protein coupled receptors (GPCRs). The binding of S1P to these receptors (S1P1-5) is closely associated with immune cell development and recruitment. As such, the modulation of S1P-related pathways is of particular interest for the development of immunomodulating agents. To reach its native GPCRs, S1P must be released from the cell. This process is facilitated by the transmembrane transport protein Spinster homolog 2 (Spns2) in most vertebrates. Studies in murine species have demonstrated that the protein plays a key role in directing immune cell chemotaxis and the progression of autoimmune diseases. Consequently, Spns2 represents an attractive target for the pharmaceutical induction of immunosuppression. While several drugs that act through the modulation of S1P receptor signaling have received FDA approval for the treatment of autoimmune disorders (fingolimod, siponimod, ozanimod, and ponesimod), they typically manifest on-target cardiovascular side-effects. Therefore, the development of novel Spns2 inhibitors is a prudent alternative approach to achieve S1P-mediated lymphopenia. In this dissertation, the design, synthesis, and activities of highly potent Spns2 inhibitors are disclosed. These structures spanned several scaffolds and culminated in the discovery of a phenylurea derivative 4.11i. In vitro assessment of 4.11i demonstrated that the compound possessed an IC50 value of 92 nM, making it the most potent inhibitor of Spns2 disclosed to date. Intraperitoneal administration of 4.11i (10 mg/kg dose) into mice reduced circulating lymphocyte counts and impaired the progression of experimental autoimmune encephalomyelitis (a murine model of multiple sclerosis). Taken together, these data validated the target of 4.11i in vivo and represented the first reported instance of Spns2 inhibition as a viable multiple sclerosis treatment. Additional work is currently being undertaken to further improve in vivo activity and pharmacokinetic properties of 4.11i. / Doctor of Philosophy / White blood cells comprise a significant portion of the body's natural defense mechanisms. In healthy individuals, these white blood cells identify and destroy foreign materials and organisms. However, in patients with multiple sclerosis, immune cells can become sensitized to protein fragments lining the myelin sheath of neurons. These autoreactive immune cells recognize the body's natural neuronal proteins as antigens. Damage exerted by autoreactive cells leads to the development of neurological impairments (i.e., fatigue, muscle weakness, and slurred speech) as nerve impulses are disrupted before reaching their target. First-line treatment of multiple sclerosis often centers on the administration of immunosuppressive drugs to curtail the progression of the disease and mitigate immune cell-directed demyelination. A driving factor in white blood cell localization is the lipid sphingosine-1-phosphate (S1P). Concentrations of S1P are often not static in the body, with different tissue types and fluids possessing variable levels. Immune cells, and lymphocytes in particular, use this natural S1P gradient to dictate their movement within the body. Lymphocytes will track with the S1P gradient, going from areas of lower S1P concentration (lymph tissue) to areas of higher S1P concentration where synthetic enzyme expression is upregulated (multiple sclerosis lesions). Consequently, the development of drugs that can alter this S1P gradient represents an ideal avenue to achieve immunosuppression. One key mediator of S1P release is the transmembrane transport protein Spinster homolog 2 (Spns2). This protein directs the secretion of intracellular S1P into the extracellular space and is necessary for lymphocytes to enter circulation. However, little effort has been devoted to the development of Spns2 inhibitors. As such, the inhibition of this protein represents a novel and underexplored target for the treatment of autoimmune disorders. In this disclosure, the structures of several highly potent Spns2 inhibitors are revealed. The work around these structures led to the discovery of 4.11i. This compound proved highly potent in biological assays and animal models. Mice treated with 4.11i experienced a reduction in circulating lymphocyte counts and demonstrated less symptom manifestation in multiple sclerosis disease models.
76

Caractérisation fonctionnelle des cellules souches cardiaques humaines dans un but thérapeutique / Functional characterization of the human cardiac stem cells

Ayad, Oualid 12 December 2017 (has links)
L'objectif de cette thèse était de développer et de caractériser un modèle de cellules souches cardiaques humaines dans un contexte de thérapie cellulaire. Après avoir sélectionné et caractérisé une population de cellules souches d'origine mésenchymateuse, isolée à partir d'auricules humaines, exprimant le marqueur W8B2 (CSCs W8B2+), nous nous sommes focalisés (par les techniques de RT-qPCR à haut rendement, d'immuno-marquage, de western-blot et de fluorescence calcique) sur ; 1. la caractérisation génique des canaux ioniques et des acteurs de la signalisation calcique et 2. l'étude de leur différenciation in vitro en parallèle à l'activité calcique intracellulaire. Les résultats montrent que CSCs W8B2+ tendent à se différencier en cellules pacemaker. Certains gènes spécifiques nodaux, comme Tbx3, HCN, ICaT,L, Kv, NCX, s'expriment durant la différenciation. L'enregistrement de l'activité calcique (via une sonde optogénétique) montre la présence d'oscillations calciques qui évoluent en fréquence et en intensité pendant la différenciation. Les stocks-IP3 sensibles et l'échangeur NCX joueraient un rôle fondamental.Nous avons ensuite étudié l'importance du canal BKCa et des récepteurs sphingosine 1-phosphate (S1P) dans la régulation des propriétés fondamentales des CSCs W8B2+. L'inhibition du BKCa diminue la prolifération cellulaire en accumulant les cellules à la phase G0/G1, réprime l'auto-renouvellement mais n'affecte pas la migration. Quant à la S1P elle freine la prolifération et l'auto-renouvellement via une voie différente de celles des récepteurs S1P1,2,3.Ce travail fait ressortir des cibles moléculaires fondamentales dans un contexte de thérapie cellulaire cardiaque. / The aim of this thesis was to develop and characterize a model of human heart stem cells in a context of cell therapy.A population of mesenchymal stem cells, expressing the W8B2 marker (CSCs W8B2+), was first isolated from human auricles and characterized using high-throughput RT-qPCR techniques, immuno-labeling, western-blot and calcium fluorescence imaging. These experiments were focused on 1. the gene expression of ion channels and calcium signaling proteins; and 2. the study of CSCs W8B2+ in vitro differentiation and associated intracellular calcium activity changes.The results show that CSCs W8B2+ tend to differentiate into pacemaker cells. Some nodal specific genes such as Tbx3, HCN, ICaT, L, Kv, NCX, are expressed during differentiation. The recording of calcium activity (via an optogenetic probe) shows the presence of calcium oscillations that change in frequency and intensity during differentiation. IP3 sensitive calcium stocks and the NCX exchanger would play a fundamental role in these variations.Then we studied the importance of the BKCa channel and the sphingosine 1-phosphate (S1P) receptors in the regulation of the fundamental properties of the W8B2+ CSCs. Inhibition of BKCa reduces cell proliferation by accumulating cells in the G0 / G1 phase, suppresses cell self-renewal but does not affect migration properties. Concerning S1P, it decreases proliferation and self-renewal without stimulate S1P1,2,3 receptors.This work highlights fundamental potential molecular targets in a context of cardiac cell therapy.
77

Targeting Sphingosine Kinase 2 as a Treatment for Cholangiocarcinoma

Stillman, Anthony D 01 January 2019 (has links)
Cholangiocarcinoma (CCA) has a high mortality rate and its occurrence is rising. This increase prompts the need for improved CCA treatments. Studies have suggested that CCA is highly reliant on the sphingosine-1-phosphate-receptor-2 (S1PR2) and sphingosine kinase 2 (SphK2). Recently, a competitive SphK2 inhibitor, ABC294640, has been approved for clinical trial. ABC294640 has the potential to treat CCA, which is support by a phase I clinical study that was able to temporarily treat a patient suffering from metastasized CCA with ABC294640. To determine the viability of ABC294640 as a treatment for CCA, this study focused on determining the effects of ABC294640 on rat CCA cell lines. We found that ABC294640 inhibited the growth and migration of CCA and CAFs cells. The growth and count of 3-D organotypic co-culture of CCA and CAFs, which forms the “duct-like” structures, were reduced by ABC294640. The potential of inhibiting SphK2 as a treatment for CCA is supported by our finding of increased expression of S1PR2 and SphK2 in CCA patient liver samples. In conclusion, ABC294640 represents a potential therapeutic agent for CCA.
78

Fumonisin exposure biomarkers in humans consuming maize staple diets

Van der Westhuizen, Liana 03 1900 (has links)
Thesis (PhD (MedSc))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: Fumonisins are carcinogenic mycotoxins which occur world-wide in maize and maize-based products intended for human consumption. Consumption of fumonisin contaminated maize as a staple diet has been associated with oesophageal and liver cancer incidence as well as neural tube defects. This study has confirmed the State of Santa Catarina, Brazil as another region where the consumption of maize contaminated with fumonisins and high oesophageal cancer incidence co-occur. Since fumonisins exert their main biochemical effect by disruption of the sphingolipid biosynthetic pathway and are implicated in cancer, the role of fumonisin B1 (FB1) in FB1–induced rat hepatocyte nodules was investigated. The current study showed that FB1 exposure activated sphingosine accumulation in the nodules which could induce the bio-active sphingosine 1-phosphate to provide a selective growth stimulus on subsequent FB1 exposure. Since the FB1-induced hepatocyte nodules were not resistant to the disruption of sphingolipid biosynthesis, it was not the mechanism whereby the altered hepatocytes escaped the mitoinhibition of FB1 and selectively proliferated into hepatocyte nodules. A study in maize subsistence farming communities investigated the sphingosine and sphinganine levels in blood and urine of participants. Fumonisin exposure was assessed in these communities based on fumonisin levels in maize that was concurrently collected from the areas where the participants resided. Subsequently fumonisin exposure was assessed in individuals based on the fumonisin levels in maize collected from each household and by acquiring weighed food records for each member of the household. It was confirmed in both these studies that communities are chronically exposed to fumonisin levels well above the provisional maximum tolerable daily intake determined by the Joint FAO/WHO Expert Committee on Food Additives. Since the sphinganine and sphingosine levels in blood and urine of the participants exposed to various levels of fumonisin were not significantly different, the sphingoid bases and their ratios could not be established as a biomarker of fumonisin exposure. Therefore, an alternative biomarker of exposure was investigated during studies into a practical cost effective method to reduce fumonisin. The customary maize food preparation practices were assessed in a maize subsistence farming community and subsequently optimised to reduce the fumonisin levels in the maize under laboratory-controlled conditions. Implementation of this optimised and culturally acceptable intervention method of sorting and washing maize in a rural community reduced fumonisin contamination in home-grown maize by 84%. The intervention study attained a 62% reduction in fumonisin exposure based on fumonisin levels in maize-based food and consumption as assessed by 24-h dietary recall questionnaires. The alternative biomarker of fumonisin exposure, urinary FB1, was investigated during the intervention study. The FB1 urinary biomarker measured fumonisin intake at the individual level and confirmed the reduction achieved as assessed by food analysis and food intake data. The biomarker was thus well correlated with fumonisin exposure and confirmed the efficacy of the simple and culturally acceptable intervention method. Utilisation of the urinary FB1 biomarker and the customised hand-sorting and washing of maize to reduce fumonisin exposures has the potential to improve food safety and health in subsistence maize farming communities. / AFRIKAANSE OPSOMMING: Fumonisien is kankerverwekkende mikotoksiene wat wêreldwyd voorkom op mielies en mielie-verwante produkte bestem vir menslike verbruik. Daar is ‘n verband tussen die voorkoms van slukderm en lewer kanker, sowel as neuraalbuisdefekte, in gemeenskappe waar fumonisien-gekontamineerde mielies die stapel voedsel is. Die Brasiliaanse Staat, Santa Catarina is uitgewys as nog 'n area waar hoë voorkoms van slukdermkanker en hoë fumonisin vlakke in mielies gesamentlik voorkom. Aangesien fumonisien verbind word met van kanker en die hoof biochemiese effek die ontwrigting van die sfingolipiedbiosintese weg is, is die rol van fumonisien B1 (FB1) in FB1-geinduseerde rot hepatosietnodules ondersoek. Die studie het getoon dat FB1 blootstelling aktiveer sfingosien ophoping in die hepatosietnodules wat moontlik die bio-aktiewe sfingosien 1-fosfaat aktiveer om op daaropvolgende FB1 blootstellings geselekteerde groei stimulasie te ondergaan. Die FB1-geïnduseerde hepatosietnodules was nie bestand teen die inhibisie van die sfingolipied biosintese nie en dus nie die meganisme waardeur die veranderde hepatosiete mito- inhibisie van FB1 vryspring, en selektief ontwikkel in hepatosietnodules nie. ‘n Studie in bestaansboerdery gemeenskappe het die sfingosien en sfinganien vlakke in bloed en uriene vergelyk met individuele fumonisien blootstelling. Laasgenoemde is gebaseer op fumonisien vlakke in gekolleekterde mielies vanuit die deelnemers se huise en aannames vanuit die literatuur. Die opvolg studie in die areas het individuele fumonisien blootstelling bepaal gebaseer op fumonisien vlakke in die mielies van elke huishouding en die inname van mielies deur die voedsel van elke individu te weeg. Albei hierdie studies het bevestig dat die gemeenskappe blootgestel is aan kroniese fumonisien vlakke wat die maksimum toelaatbare daaglikse inname wat deur die gesamentlike FAO/WHO deskundige komitee op voedsel toevoegsels vasgestel is, oorskei. Aangesien die sfingosien en sfinganien vlakke nie beduidend verskil in bloed of uriene van mense wat aan verskillende fumonisien-kontaminasie vlakke blootgestel is nie, kan die lipiedbasisse en hul verhouding nie as ‘n biologiese merker vir fumonisien blootstelling bevestig word nie. Dus is ‘n alternatiewe biologiese merker vir fumonisien blootstelling ondersoek gedurende ‘n studie oor praktiese bekostigbare maniere om fumonisin blootstelling te verlaag. Die tradisionele voedsel voorbereidingspraktyke in ‘n bestaansboerdery gemeenskap is bestudeer en onder laboratorium-gekontroleerde toestande aangepas om fumonisien vlakke in die mielies optimaal te verlaag. Die kultureel aanvaarbare intervensie metode, sortering en was van die mielies, is in ‘n bestaansboerdery gemeenskap toegepas waar ‘n 84% verlaging in fumonisien vlakke van die mielies verkry is. Die intervensie metode het ‘n 62% verlaging in fumonisien blootstelling te weeggebring deur fumonisien vlakke in die mieliegebasserde disse te meet en inname daarvan deur die deelnemers met 24-h diëetkundige vraelyste vas t e stel. Gedurende die intervensie studie is urienêre FB1, die alternatiwe biologiese merker van fumonisien blootstelling, ondersoek. Individuele fumonisien blootstelling data, bepaal met die urienêre FB1 biomerker, het goed ooreengestem met die voedsel analise en voedsel inname data en het dus die doeltreffendheid van die praktiese kultuur aanvaarbare intervensie metode bevestig. Benutting van die FB1 urienêre biologies merker en die optimale sortering en was van die mielies om die fumonisien blootstelling te verlaag het die potensiaal om voedselveiligheid en gesondheid in hierdie bestaansboerdery gemeenskappe aansienlik te verbeter.
79

Defining the Role of Reactive Oxygen Species, Nitric Oxide, and Sphingolipid Signaling in Tumor Necrosis Factor - Induced Skeletal Muscle Weakness

Stasko, Shawn 01 January 2013 (has links)
In many chronic inflammatory diseases, patients suffer from skeletal muscle weakness, exacerbating their symptoms. Serum levels of tumor necrosis factor-alpha (TNF) and sphingomyelinase are increased, suggesting their possible role in the progression of this weakness. This dissertation focuses on the role that reactive oxygen species (ROS) and nitric oxide (NO) play in mediating TNF-induced skeletal muscle weakness and to what extent sphingolipid signaling mediates cellular response to TNF. The first aim of this work was to identify which endogenous oxidant species stimulated by TNF contributes to skeletal muscle weakness. In C57BL/6 mice (n=38), intraperitoneal injection of TNF elicited a 25% depression of diaphragm contractile function. In separate experiments, diaphragm fiber bundles harvested from mice (n=39) and treated with TNF ex vivo showed a 38% depression of contractile function compared to untreated controls. Using ROS and NO-sensitive fluorescence microscopy in parallel with a genetic knockout animal model, TNF-induced contractile dysfunction was found to be mediated by NO generated by a specific isoform of nitric oxide synthase (NOS), nNOS. Basal levels of ROS were necessary co-mediators, but were not sufficient to elicit TNF-induced diaphragm weakness. The second aim of this dissertation was to investigate the extent to which sphingolipids could serve as a signaling cascade post-TNF stimulus leading to the generation of NO in skeletal muscle. The effects of TNF exposure in C2C12 skeletal muscle cells were studied in vitro using mass spectroscopy to measure sphingolipid metabolism and fluorescent microscopy to quantify oxidant production. TNF exposure was associated with significant mean increases in sphingosine (+52%), general oxidant activity (+33%), and NO production (+14%). These increases were due to specific modulation of nNOS as demonstrated by siRNA knockdown of neutral ceramidase and nNOS, and confirmed by pharmacologic inhibition using N-Oleoylethanolamine and di-methylsphingosine. In summary, these findings confirm NO as a major causative oxidant contributing to TNF’s deleterious phenotype in skeletal muscle. Moreover, the work suggests a new role for sphingosine in skeletal muscle and warrants further study of the enzymatic regulation of sphingosine to advance the discovery of new therapies for patients suffering from chronic inflammation.
80

Simvastatin-induced sphingosine 1−phosphate receptor 1 expression is KLF2-dependent in human lung endothelial cells

Sun, Xiaoguang, Mathew, Biji, Sammani, Saad, Jacobson, Jeffrey R., Garcia, Joe G. N. 21 March 2017 (has links)
We have demonstrated that simvastatin and sphingosine 1-phosphate (S1P) both attenuate increased vascular permeability in preclinical models of acute respiratory distress syndrome. However, the underlying mechanisms remain unclear. As Kruppel-like factor 2 (KLF2) serves as a critical regulator for cellular stress response in endothelial cells (EC), we hypothesized that simvastatin enhances endothelial barrier function via increasing expression of the barrier-promoting S1P receptor, S1PR1, via a KLF2-dependent mechanism. S1PR1 luciferase reporter promoter activity in human lung artery EC (HPAEC) was tested after simvastatin (5 mu M), and S1PR1 and KLF2 protein expression detected by immunoblotting. In vivo, transcription and expression of S1PR1 and KLF2 in mice lungs were detected by microarray profiling and immunoblotting after exposure to simvastatin (10 mg/kg). Endothelial barrier function was measured by trans-endothelial electrical resistance with the S1PR1 agonist FTY720-(S)-phosphonate. Both S1PR1 and KLF2 gene expression (mRNA, protein) were significantly increased by simvastatin in vitro and in vivo. S1PR1 promoter activity was significantly increased by simvastatin (P < 0.05), which was significantly attenuated by KLF2 silencing (siRNA). Simvastatin induced KLF2 recruitment to the S1PR1 promoter, and consequently, significantly augmented the effects of the S1PR1 agonist on EC barrier enhancement (P < 0.05), which was significantly attenuated by KLF2 silencing (P < 0.05). These results suggest that simvastatin upregulates S1PR1 transcription and expression via the transcription factor KLF2, and consequently augments the effects of S1PR1 agonists on preserving vascular barrier integrity. These results may lead to novel combinatorial therapeutic strategies for lung inflammatory syndromes.

Page generated in 0.082 seconds