• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • Tagged with
  • 25
  • 25
  • 17
  • 15
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design and Synthesis of Orally Bioavailable Sphingosine Kinase 2 Selective Inhibitors

Sibley, Christopher David 16 July 2020 (has links)
In humans, mammals, and perhaps all vertebrates, sphingolipids exist as a family of cellular signaling molecules and have been shown to be involved in a wide range of biological processes ranging from proliferation to apoptosis. As such, sphingolipid signaling has garnered the attention of numerous researchers as an attractive candidate for pharmacological manipulation. The synthetic pathway of one prominent sphingolipid, sphingosine 1-phosphate (S1P), has been implicated in a variety of disease states such as cancer, sickle cell disease, multiple sclerosis, and renal fibrosis. Formation of S1P is facilitated from the ATP dependent phosphorylation of sphingosine (Sph) through its generative enzyme's sphingosine kinase 1 and 2 (SphK1 and SphK2). Inhibition of SphK1 and SphK2 results in the manipulation of S1P levels, which has been shown to be therapeutic in various animal models of disease. While there are multiple examples of potent SphK1-selective and dual SphK1/2 inhibitors, SphK2-selective inhibitors are scarce. Herein, we describe the design, synthesis and biological testing of SphK2-selective inhibitors. We first describe the discovery that introducing a trifluoromethyl group onto the internal aryl ring of our inhibitor scaffold led to superior selectivity and potency towards SphK2. We demonstrate that the trifluoromethyl moiety is interacting with a previously unknown side cavity in the substrate binding site of SphK2 that is unique and could be exploited in the design of SphK2-selective inhibitors. The synthesis of 21 derivatives with various substituents spanning off the internal aryl ring was completed, therefore characterizing the preferred size and chemical nature of moieties positioned in that portion of the binding site. This work led to the development of the most potent SphK2-selective inhibitor known at the time. We then describe the transformation of our SphK2-selective inhibitors into an orally bioavailable drug. We explain how the guanidine functionality on our inhibitor scaffold hinders our compounds from being orally bioavailable. Consequently, a library of 24 derivatives with various modifications to the guanidine functionality was synthesized and evaluated for improved orally bioavailability. Highlighted in this work is the development of the most potent SphK2-selective inhibitor currently known 3.14 (SLS1081832), which displays a hSphK2 Ki of 82 nM and 122-fold selectivity for SphK2. Chemical modification and in vivo assessment of 3.14 (SLS1081832) prodrugs was explored. / Doctor of Philosophy / In humans, sphingosine 1-phosphate (S1P) is a signaling molecule that is generated through an ATP dependent reaction of sphingosine (Sph) via sphingosine kinase 1 and 2 (SphK1 and SphK2). Furthermore, S1P has been shown to be implicated in various diseases such as cancer, sickle cell disease, multiple sclerosis, and renal fibrosis. Inhibition of SphK1 and SphK2 has been shown to be therapeutic towards the symptoms of these diseases. Therefore, in order to alleviate these disorders, the concentrations of S1P must be controlled through pharmacological inhibition of SphK1 and SphK2. There are multiple reported examples of potent SphK1-selective and dual SphK1/2 inhibitors; however, SphK2-selective inhibitors are scarce. This work describes the synthesis and biological assessment of 21 compounds for their effectiveness in selectively targeting and inhibiting SphK2. The work led to the discovery of a previously unrecognized side cavity in the binding pocket of SphK2 that enhances inhibitor potency and selectivity towards SphK2. Furthermore, studies characterizing the preferred size and chemical nature of moieties positioned in that portion of the binding site led to the development of the most potent SphK2- selective inhibitor known at the time. Building on this work, we next focused on the transformation of our SphK2-selective inhibitors into a drug that could be administered orally. We describe the synthesis of 24 compounds with various modifications to one portion of our scaffold and their effect on improved orally bioavailability. This work led to the development of the most potent SphK2-selective inhibitor currently known 3.14 (SLS1081832).
12

Structure Activity Relationship Studies on Isoform Selective Sphingosine Kinase Inhibitors

Congdon, Molly D. 23 August 2016 (has links)
A variety of diseases including Alzheimer's disease, asthma, cancer, fibrosis, multiple sclerosis, and sickle cell disease have been associated with elevated levels of sphingosine-1-phosphate (S1P). S1P, a pleiotropic lipid mediator involved in a broad range of cellular processes, is synthesized solely by the phosphorylation of sphingosine (Sph) and is catalyzed by the two isoforms of sphingosine kinase (SphK1 and SphK2). Therefore, SphKs are a potential therapeutic target; however, the physiological role of SphK2 is still emerging. In order to determine the role of SphK2 in vivo, more potent and selective small molecule inhibitors of SphK2, as well as dual inhibitors are necessary. Herein, explorations and advancements on the second generation SphK2 selective inhibitor SLR080811 are disclosed. Investigations into the lipophilic tail region of the hSphK2 inhibitor SLR080811 are detailed. This investigation highlights the dependency of SphK2 selectivity and potency on overall compound length. More importantly, this study identified the internal aryl ring of SLR080811 as a key pharmacophore of the scaffold. To further probe the significance of the aromatic region, the phenyl ring was replaced by a 2,6-naphthyl ether skeleton. Investigations into the tail region of this scaffold are described in detail. Key discoveries from this structure-activity relationship study include SLC5111312 (hSphK2 Ki = 0.90 μM, dual hSphK inhibitor), SLC5091592 (hSphK2 Ki = 1.02 μM, > 20-fold hSphK2 selective) and SLC5121591 (hSphK2 Ki = 0.61 μM, >16-fold hSphK2 selective). Molecular modeling studies with hSphK2 indicate that the extended aromatic group is able to participate in π-π stacking interactions with Phe548. In silico docking studies indicate that a guanidine hydrogen bond to Asp211 is key for SphK2 selectivity, and incorporation of a 3'-hydroxyl group on the pyrrolidine ring increases hydrogen bonding to Asp308, thereby increasing SphK1 potency and reducing selectivity. Additionally, biological studies employing SLC5111312 have helped to further elucidate the role of SphK2, suggesting that SphK2 has a catalytic role in the regulation of blood S1P levels. The shape of the hSphK2 binding pocket was probed by introducing an indole moiety in place of the naphthyl ring and varying its substitution pattern. One key discovery from this study is SLC5101465 (hSphK2 Ki = 0.09 μM, > 111 fold SphK2 selective), which has a 1,5-indole substitution pattern with an N-nonyl "tail". Molecular docking simulations highlight the importance of rotatable bonds and a relatively linear orientation between the "head group" and "tail group" to maintain essential hydrogen bond interactions to Asp residues with the guanidine moiety while minimizing steric interactions in the middle of the binding pocket. Expanding upon the 1,5-indole scaffold of SLC5101465, a series of aryl tail derivatives are examined. This study confirms the necessity of electron withdrawing groups located at the end of the inhibitor scaffold to optimize binding in the tail region of the SphK2 binding pocket. / Ph. D.
13

Design, synthesis, and biological evaluation of selective sphingosine kinase inhibitors

Raje, Mithun 08 June 2012 (has links)
Sphingosine kinase (SphK) has emerged as an attractive target for cancer therapeutics due to its role in cell proliferation. SphK phosphorylates sphingosine to form sphingosine-1-phosphate (S1P) which has been implicated as a major player in cancer growth and survival. SphK exists as two different isoforms, namely SphK1 and SphK2, which play different roles inside the cell. The dearth of isoenzyme-selective inhibitors has been a stumbling block for probing the exact roles of these two isoforms in disease progression. This report documents our efforts in developing SphK2-selective inhibitors. We provide the first demonstration of a SphK inhibitor containing a quaternary ammonium salt. We developed highly potent and moderately selective inhibitors that were cell permeable and interfered with S1P signaling inside the cell. In an effort to improve the selectivity of our inhibitors and enhance their in vivo stability, we designed and synthesized second generation inhibitors containing a heteroaromatic linker and a guanidine headgroup. These inhibitors were more potent and selective towards SphK2 and affected S1P signaling in cell cultures and various animal models. / Ph. D.
14

Structure-activity relationship studies and biological evaluation of selective sphingosine kinase inhibitors

Morris, Emily A. 01 June 2015 (has links)
Sphingosine 1-phosphate (S1P) has become a prevalent drug discovery target due to studies implicating it to several disease pathologies such as fibrosis, sickle cell disease, inflammation, diabetes, and cancer. S1P functions to induce cell proliferation and migration. S1P signaling occurs through intracellular targets or transport outside of the cell via ABC transporters, where it acts as a ligand to G-protein coupled receptors (S1P1-5). Sphingosine kinase (SphK) 1 and 2 phosphorylate sphingosine to S1P; these are the only enzymes known to mediate the phosphoryl transfer. Inhibiting either or both SphKs helps to modulate S1P, which may be useful as a therapeutic avenue for disease states where S1P signaling has gone awry. Herein, we document our efforts in profiling the structure-activity relationships (SAR) of SphK2 through an iterative process of synthesis and biological testing. First, an SAR structured around the head and linker region of our lead molecule, SLR080811, was performed. SLR080811 has a Ki of 1.3 µM and is 5-fold selective for SphK2. The modifications performed on SLR080811 yielded two promising inhibitors: SLP120701 (SphK2 selective with a Ki of 1.2 µM) and SLP7111228 (>200 fold selective for SphK1 with a Ki of 48 nM). In vitro studies in U937 cells yielded a decrease in S1P levels with the introduction of inhibitors. Mouse studies provided insight into the pharmacokinetic effect of our SphK2-selective inhibitors, revealing an increase in S1P levels in the blood. When in vivo studies were performed with the SphK1 selective inhibitor, S1P levels in blood decreased. These molecules provide the chemical biology tools to determine the effect of modulating S1P levels in vivo. We also focused our investigation on the tail region of the pharmacophore. From this study, SLM6031434 and SLM6041418 were discovered and both proved to be more potent and selective SphK2 inhibitors than SLR080811. SLM6031434 has a Ki of 370 nM and is 23-fold selective for SphK2. SLM6041418 has a Ki of 430 nM and is 24-fold selective for SphK2. Consistent with our previous observations, in vitro studies showed a decrease in S1P levels when inhibitor was introduced. Similarly, in vivo studies resulted in an increase of S1P levels in the blood. These compounds are positioned towards animal models of disease. / Master of Science
15

Characterization of Influenza:Streptococcus pneumoniae synergistic disease and potential for disease alleviation via sphingolipid therapy

Gasser, Amanda Lynn 06 September 2013 (has links)
Influenza A virus (IAV) is generally associated with the seasonal malady that causes brief respiratory illness during the winter months, known simply as "the flu." Most otherwise healthy individuals will suffer from mild fever, congestion, headaches and myalgia that are resolved within 5-7 days of onset. However, there are nearly 500,000 influenza-related deaths that occur world-wide every year. Many of these casualties and patients hospitalized with influenza also test positive for bacterial pneumonia, the most common agent being Streptococcus pneumoniae. Although all individuals are subject to this viral:bacterial synergistic disease, the young, elderly, and immunocompromised are the most susceptible. Previous studies have shown that viral infection creates a prolonged hyper-responsive pro-inflammatory state in the lungs, which increases susceptibility to secondary bacterial infection. Lethality is due to detrimental pulmonary damage from a dysregulated host inflammatory response, known as the "cytokine storm." However, the nature of dual infection has not been well-studied in the elderly demographic. Therefore, we aim to better define this disease synergy in an aged mouse model and explore potential therapeutic alternatives that could be beneficial for the aged and other vulnerable populations. Sphingolipid modulation has emerged as a potential target to ameliorate the excessive inflammation (cytokine storm) elicited by highly pathogenic influenza. There is particular emphasis on sphingosine 1-phosphate (S1P) signaling, as well as control of intracellular S1P levels via sphingosine kinases (SK). Sphingolipids are involved in a multitude of cellular processes, and are tightly regulated by their metabolizing enzymes. We hypothesize that manipulation of sphingolipid signaling and alteration of the internal sphingolipid milieu will diminish the inflammatory response elicited by IAV infection. Using fluorescence-activated cell sorting (FACS), real-time PCR and cytometric bead array (CBA) analysis, we evaluated the immunomodulatory effects of systemic sphingosine analog treatment within the lung microenvironment under homeostatic and influenza-infected conditions. FTY720 treatment caused transient, but significant lymphopenia, influx of neutrophils and efflux of macrophages in the lungs, which was enhanced during a mild influenza infectionGene expression in the lungs was generally unaltered, but protein levels showed increases in specific influenza-induced cytokines, suggesting these treatments may have post-transcriptional effects on cytokine expression. To evaluate sphingolipid modulation in specific pulmonary cell types, we next observed the effects of these compounds and sphingosine kinase (SK) inhibitors in epithelial and alveolar macrophage-like cell lines. SK inhibitors and Enigmol demonstrated anti-viral effects in A549 cells, decreasing viral loads by up to 1.5 logs. Real-time PCR and CBA analysis further demonstrated that these effects were associated with alterations in key cytokine expression, including CCL2, CCL5, CXCL10, IL-6, and IL-8. Collectively, these findings indicate that therapeutic sphingolipid modulation has the potential for creating a protective microenvironment in the lungs that could alleviate or even prevent viral:bacterial synergistic disease. / Master of Science
16

Sphingosine-1-Phosphate and Stromal Cells Contribute to an Aggressive Phenotype of Ovarian Cancer

Guinan, Jack Henry 26 June 2017 (has links)
Metastasis remains the largest contributor for ovarian cancer mortality. The five-year survival rate decreases dramatically as the disease advances from the primary tumor site to other organ sites within the peritoneal cavity. Thus, characterizing the mechanisms behind this metastatic potential may better elucidate the molecular mechanisms of ovarian cancer progression and may reveal novel targets for preventative and therapeutic treatments. Sphingosine-1-phosphate (S1P) is a critical secondary messenger responsible for many pro-cancer signals, e.g., proliferation, angiogenesis, inflammation, anti-apoptosis, and others. While S1P's role in the aggressive profile of many other cancers is well defined, its function in ovarian cancer development is less understood. The concentration of S1P is significantly increased in the ascites of women with malignant ovarian cancer, suggesting a role in ovarian cancer progression. This study aims to understand the importance of S1P in ovarian cancer metastasis. Using our well-characterized murine cell model for progressive ovarian cancer, we investigate the impact of S1P on ovarian cells and their interactions with the stromal vascular fraction recruited from the adipose tissue in culture conditions that mimic the physiologic environment of the peritoneal cavity. These studies will provide a mechanistic link of obesity, inflammation, and the increased risk of obese women to develop and die from ovarian cancer and identify signaling events as targets for interventions. / Master of Science / The mortality rate of women diagnosed with ovarian cancer increases significantly as the disease metastasizes to other regions. Understanding the progression of this disease can create better detection and treatment methods, improving the outcome of women diagnosed with ovarian cancer. Sphingosine-1-phosphate (S1P) is a lipid molecule that has been implicated in many pro-tumorigenic properties in cancer cells; however, its role in ovarian cancer is less known. Stromal cells excrete high levels of S1P and are recruited into tumors for support and many other functions. Elucidating the role stromal cell incorporation into tumors and the role of S1P in ovarian cancer aggressiveness may highlight key pathways that can be targeted for screening methods and therapeutic treatments. This paper aims to understand the connections between S1P, stromal cells, and ovarian cancer as it progresses from a primary site to a metastatic, highly aggressive disease.
17

Structure-Activity Relationship Studies of Sphingosine Kinase Inhibitors and Mitochondrial Uncouplers

Childress, Elizabeth Saunders 19 July 2017 (has links)
Sphingosine 1-phosphate (S1P) is a cellular signaling molecule that has been implicated in a variety of diseases including cancer, fibrosis, Alzheimer's, and sickle cell disease. It is formed from the phosphorylation of sphingosine (Sph) by sphingosine kinase (SphK) and SphK exists as two isoforms-"SphK1 and SphK2, which differ with respect to their cellular activity and localization. As the key mediators in the synthesis of S1P, SphKs have attracted attention as viable targets for pharmaceutical inhibition. To validate their potential as therapeutic targets, we aimed to develop potent, selective, and in vivo active inhibitors of SphK. Herein, we describe the design, synthesis and biological evaluation of SphK2 inhibitors. We first describe the development of six SphK2 inhibitors that assess the utility of replacing lipophilic tail groups with heterocyclic rings. These six compounds demonstrate that the lipid binding pocket for SphK2 cannot accommodate compounds with tail groups that are conformationally restricted or positively charged. We then describe the development of aminothiazole-based analogues of an SphK1-selective inhibitor. A library of 37 aryl-substituted aminothiazole tail groups were synthesized, revealing a structure-activity relationship study that examines electronic effects on the aryl-substituted aminothiazoles and the effect of modifying the amino portion of the aminothiazole. These molecules show surprisingly good potency and selectivity for SphK2. In particular, we highlight 3.20dd (SLC4101431), a biphenyl aminothiazole that is the post potent and selective SphK2 inhibitor to date, with an SphK2 Ki of 90 nM and 100-fold selectivity for SphK2. This molecule's in vivo activity will also be discussed. Mitochondrial uncouplers are small molecules that shuttle protons from the inter membrane space to the mitochondrial matrix independent of ATP synthase, which disrupts oxidative phosphorylation and promotes increased nutrient metabolism for homeostasis to be maintained. Consequently, small molecule mitochondrial uncouplers have been pursued as probes for mitochondrial function and as potential therapeutics for the treatment of obesity and type 2 diabetes. Herein, we describe the design, synthesis, and biological evaluation of small molecule mitochondrial uncouplers. We report a library of 52 compounds that have good mitochondrial uncoupling activity over a wide therapeutic range, including 5.16t (SHC4111522) and 5.17i (SHC4091665), which have EC50 values of 0.63 uM and 1.53 uM, respectively, and achieve at least 2-fold increase in oxygen consumption rates relative to basal levels. With these molecules, we demonstrate that pKa and cLogP significantly contribute to uncoupling activity and must be accounted for when developing new generation small molecule mitochondrial uncouplers. / Ph. D. / Sphingosine kinase 1 and 2 (SphK1 and SphK2) are enzymes that facilitate the production of the biomolecule sphingosine 1-phosphate (S1P), which plays an essential role in cell growth and survival. However, overproduction of S1P has been linked to a number of diseases including cancer, Alzheimer’s, and sickle cell disease. Therefore, because S1P is involved in these diseases, the amount of available S1P must be controlled. This work describes the design, development, and biological study of over 40 compounds that could be used as potential inhibitors of SphK2 to help control S1P levels and, therefore, hopefully alleviate the effects of disease. In particular, this work describes molecules that probe the SphK2 binding pocket and demonstrates that the molecules cannot be rigid or positively charged when binding to the hydrophobic portion of the SphK2 binding pocket. Additionally, this work describes the most potent and selective reported SphK2 inhibitor to date, 3.20dd (SLC4101431). Mitochondrial uncouplers are compounds that target our body's mitochondria and aim to make ATP production challenging, causing the mitochondria to burn extra energy in the form of glucose and fatty acids to allow normal levels of ATP to be produced. By making the mitochondria burn extra energy, mitochondrial uncouplers have the potential to be treatments for diseases such as obesity and diabetes. This works describes the design, development, and biological study of over 50 mitochondrial uncouplers that are capable of increasing mitochondrial activity over a wide concentration range, including 5.16t (SHC4111522) and 5.17i (SHC4091665), which are very potent and effective uncouplers.
18

Rôle de la voie sphingosine kinase 1/sphingosine 1-phosphate dans l'adaptation à l'hypoxie intratumorale des adénocarcinomes rénaux à cellules claires / Role of the sphingosine kinase 1/sphingosine 1-phosphate pathway in the adaptation to intratumoral hypoxia in clear cell renal cell carcinoma

Gstalder, Cécile 08 July 2015 (has links)
Les adénocarcinomes rénaux à cellules claires (ccRCC), qui représentent 70% des tumeurs rénales, sont fortement mais irrégulièrement vascularisés, ce qui les rend hypoxiques et donc résistants aux chimiothérapies. L'hypoxie favorise l'agressivité tumorale via l'activation des facteurs de transcription HIF-1alpha et HIF-2alpha (Hypoxia-Inducible Factors). Pour cette raison, le ciblage de l'hypoxie intratumorale et des facteurs HIF dans les ccRCC constitue une stratégie thérapeutique pertinente. Dans ce projet, nous montrons pour la première fois que la voie sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) régule HIF-2alpha in vitro et in vivo. Nos résultats indiquent que la SphK1 régule le taux intracellulaire et l'activité transcriptionnelle de HIF-2alpha dans des lignées de ccRCC représentatives de certains sous-groupes retrouvés en clinique humaine ; et impliquent la S1P extracellulaire, via le récepteur S1P1, dans la régulation de HIF-1alpha et HIF-2alpha. D'autre part, nous avons évalué l'impact de l'inhibition des récepteurs à S1P et de la SphK1 par le FTY720 dans un modèle de ccRCC in vivo. Nos résultats indiquent que le FTY720 entraine une diminution transitoire du taux intratumoral de HIF-1alpha et HIF-2alpha ainsi qu'un remodelage du réseau vasculaire tumoral. En effet, le FTY720 induit une normalisation vasculaire qui aboutit à une oxygénation tumorale transitoire. Enfin, nous montrons que ce traitement permet de sensibiliser un modèle murin de ccRCC à la chimiothérapie. Ces résultats valident le rôle de la voie SphK1/S1P comme régulateur de l'adaptation à l'hypoxie dans les ccRCC. Ils constituent une étape indispensable à la transposition en clinique humaine du concept selon lequel la voie SphK1/S1P peut être ciblée afin de diminuer l'hypoxie intratumorale et de chimiosensibiliser certains cancers, le FTY720 étant déjà sur le marché. / Clear cell renal cell carcinomas (ccRCC) represent 70% of renal tumors. Because of their dense and irregular vascular network, ccRCC become hypoxic and therefore resistant to chemotherapies. Hypoxia promotes tumor aggressiveness via the activation of HIF-1alpha and HIF-2alpha (Hypoxia-Inducible Factors). For this reason, the control of intratumoral hypoxia and HIF in ccRCC could be a relevant therapeutic strategy to improve the efficacy of current treatments. In this study, we show for the first time that the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway regulates HIF-2alpha in vitro and in vivo. Our results indicate that SphK1 regulates HIF-2alpha intracellular level and transcriptional activity in ccRCC cell lines that are representative of some clinical ccRCC subgroups. Our data also involve extracellular S1P, via its receptor S1P1, in the regulation of HIF-1alpha and HIF-2alpha. In addition, in a ccRCC mouse model, we show that FTY720 - an inhibitor of the SphK1/S1P pathway- transiently decreases HIF-1alpha and HIF-2alpha intratumoral level. This is associated with a transient remodeling of the tumor vascular network indicating that FTY720 induces a vascular normalization that leads to transient tumor oxygenation. Finally, we show that this treatment sensitizes a ccRCC mouse model to chemotherapy. Overall, these results validate the key role of the SphK1/S1P pathway in the adaptation to hypoxia in ccRCC cell and animal models. Our results provide a mechanistic basis to target the SphK1/S1P pathway with FTY720 by increasing the efficacy of chemotherapy in ccRCC. They are a prerequisite for clinical transposition as FTY720 is a drug approved used in human clinic.
19

Sphingosine-1-phosphate in mast cell-mediated allergic responses

Price, Megan 27 July 2011 (has links)
Mast cells play a critical role in both acute and chronic inflammation and mature in peripheral tissues from bone marrow-derived progenitors that circulate in the blood as immature precursors. Mast cell progenitors are likely to encounter the serum-borne bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P), during migration to target tissues. Mast cells developed from human cord blood-derived progenitors cultured with stem cell factor (SCF) alone express intragranular tryptase (MCT), the phenotype predominant in the lung. S1P accelerated the development of cord blood-derived mast cells (CB-MCs) and strikingly increased the numbers of mast cells expressing chymase. These mast cells have functional FcepsilonRI, and similar to skin mast cells that express both tryptase and chymase (MCTC), also express CD88, the receptor for C5a, and are activated by anaphylatoxin C5a and the secretagogue compound 48/80. S1P induced release of IL-6, a cytokine known to promote development of functionally mature MCTC, from cord blood cultures containing adherent macrophages, and from highly purified macrophages, but not from macrophage-depleted CB-MCs. In contrast, S1P stimulated secretion of the chemokine, monocyte chemoattractant protein 1 (MCP-1/CCL2), from these macrophage-depleted and purified CB-MCs.
20

Conception, synthèse et activité anticancéreuse d’analogues basés sur la molécule FTY720 (Gilenya)

Tessier, Jérémie 10 1900 (has links)
FTY720 (aussi connu sous le nom de Fingolimod ou Gilenya) agit sur les récepteurs sphingosine-1-phosphate (S1P) et induit la suppression du système immunitaire (immunosuppression). Cette molécule est reconnue pour avoir une activité contre plusieurs cellules cancéreuses. Cette activité est indépendante de l’action sur les récepteurs S1P et on attribue plutôt la mort (apoptose) des cellules cancéreuse à la capacité que possède la molécule à réduire le transport des nutriments dans la cellule. Toutefois, malgré ses nombreux avantages, FTY720 ne peut pas être utilisé afin de traiter des humains puisque l’activation secondaire des récepteurs S1P1 et S1P3 mènent à une diminution du rythme cardiaque (bradycardie) chez les patients. Notre groupe s’est donc concentré sur la synthèse d’analogues qui potentiellement n’activeraient pas le récepteur S1P tout en gardant une activité biologique contre plusieurs cellules cancéreuses. Malgré le fait que nos analogues agissent également sur la diminution du transport des nutriments dans les cellules, nous ne connaissons pas le mécanisme d’action par lequel ceux-ci agissent. Au passage, le projet de recherche ci-présenté nous aura par ailleurs permis de développer une grande variété de sondes photo-actives dans l’espoir d’isoler une ou plusieurs protéines qui seraient impliquées dans le mécanisme d’action. / FTY720 (also known as Fingolimod, or Gilenya) functions as an immunosuppressant due to its effect on sphingosine-1-phosphate receptors. FTY720 also exhibits anticancer activity in a number of cancer cell lines. This result is independent of its effects on S1P receptors and due instead, to its ability to induce nutrient transporter down-regulation. However, FTY 720 cannot be used in human patients due to bradycardia that occurs secondary to the activation of S1P1 and S1P3 receptors. Our group focused on the design and synthesis of constrained FTY720 analogues that do not activate S1P receptors and also have the potential to be safely used in humans due to their potent antiproliferative activity against selected cancer cell lines. Although we know that our analogues, like FTY 720, act as nutrient transporter down-regulators, the proteins involved in the process are not known. We are developing a wide variety of Photo-Cross-Linking Probes to hopefully isolate one or more proteins that may be involved in one of the pathways.

Page generated in 0.095 seconds