• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • 2
  • Tagged with
  • 23
  • 23
  • 23
  • 23
  • 14
  • 12
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Exploring Column Update Elimination Optimization for Spike-Timing-Dependent Plasticity Learning Rule / Utforskar kolumnuppdaterings-elimineringsoptimering för spik-timing-beroende plasticitetsinlärningsregel

Singh, Ojasvi January 2022 (has links)
Hebbian learning based neural network learning rules when implemented on hardware, store their synaptic weights in the form of a two-dimensional matrix. The storage of synaptic weights demands large memory bandwidth and storage. While memory units are optimized for only row-wise memory access, Hebbian learning rules, like the spike-timing dependent plasticity, demand both row and column-wise access of memory. This dual pattern of memory access accounts for the dominant cost in terms of latency as well as energy for realization of large scale spiking neural networks in hardware. In order to reduce the memory access cost in Hebbian learning rules, a Column Update Elimination optimization has been previously implemented, with great efficacy, on the Bayesian Confidence Propagation neural network, that faces a similar challenge of dual pattern memory access. This thesis explores the possibility of extending the column update elimination optimization to spike-timing dependent plasticity, by simulating the learning rule on a two layer network of leaky integrate-and-fire neurons on an image classification task. The spike times are recorded for each neuron in the network, to derive a suitable probability distribution function for spike rates per neuron. This is then used to derive an ideal postsynaptic spike history buffer size for the given algorithm. The associated memory access reductions are analysed based on data to assess feasibility of the optimization to the learning rule. / Hebbiansk inlärning baserat på neural nätverks inlärnings regler används vid implementering på hårdvara, de lagrar deras synaptiska vikter i form av en tvådimensionell matris. Lagringen av synaptiska vikter kräver stor bandbredds minne och lagring. Medan minnesenheter endast är optimerade för radvis minnesåtkomst. Hebbianska inlärnings regler kräver som spike-timing-beroende plasticitet, både rad- och kolumnvis åtkomst av minnet. Det dubbla mönstret av minnes åtkomsten står för den dominerande kostnaden i form av fördröjning såväl som energi för realiseringen av storskaliga spikande neurala nätverk i hårdvara. För att minska kostnaden för minnesåtkomst i hebbianska inlärnings regler har en Column Update Elimination-optimering tidigare implementerats, med god effektivitet på Bayesian Confidence Propagation neurala nätverket, som står inför en liknande utmaning med dubbel mönster minnesåtkomst. Denna avhandling undersöker möjligheten att utöka ColumnUpdate Elimination-optimeringen till spike-timing-beroende plasticitet. Detta genom att simulera inlärnings regeln på ett tvålagers nätverk av läckande integrera-och-avfyra neuroner på en bild klassificerings uppgift. Spike tiderna registreras för varje neuron i nätverket för att erhålla en lämplig sannolikhetsfördelning funktion för frekvensen av toppar per neuron. Detta används sedan för att erhålla en idealisk postsynaptisk spike historisk buffertstorlek för den angivna algoritmen. De associerade minnesåtkomst minskningarna analyseras baserat på data för att bedöma genomförbarheten av optimeringen av inlärnings regeln.
22

Beyond "More than Moore": Novel applications of BiFeO3 (BFO)-based nonvolatile resistive switches / Neuartige Anwendungen des BiFeO3 (BFO)-basierten nichtflüchtigen Widerstandsschaltern

Du, Nan 27 May 2016 (has links) (PDF)
The size reduction of transistors has been the main reason for a successful development of semiconductor integrated circuits over the last decades. Because of the physically limited downscaling of transistors, alternative technologies namely the information processing and nonvolatile resistive switches (also termed memristors) have come into focus. Memristors reveal a fast switching speed, long retention time, and stable endurance. Nonvolatile analog bipolar resistive switching with a considerable large On/Off ratio is reported in BiFeO3 (BFO)-based resistive switches. So far resistive switches are mainly applied in memory applications or logic operations. Given the excellent properties of BFO based memristors, the further exploration of functionalities for memristive devices is required. A new approach for hardware based cryptographic system was developed within the framework of this dissertation. By studying the power conversion efficiencies on BFO memristor at various harmonics, it has been shown that two sets of clearly distinguishable power ratios are achievable when the BFO memristor is set into high or into low resistance state. Thus, a BFO-based binary encoding system can be established. As an example the unrecoverable seizure information from encoded medical data suggests the proper functioning of the proposed encryption system. Aside from cryptographic functionality, the single pairing spike timing dependent plasticity (STDP) in BFO-based artificial synapses is demonstrated, which can be considered as the cornerstone for energy-efficient and fast hardware-based neuromorphic networks. In comparison to the biological driven realistic way, only single one pairing of pre- and postsynaptic spikes is applied to the BFO-based artificial synapse instead of 60-80 pairings. Thus, the learning time constant of STDP function can be reduced from 25 ms to 125 us. / In den letzten Jahrzehnten war die Größenreduktion von Transistoren einer der Hauptgründe für die Leistungssteigerung von integrierten Halbleiterschaltungen. Aufgrund des physikalisch beschränkten Skalierungspotentials, werden alternative Technologien für Halbleiterschaltungen entwickelt. Dazu zählen neuartige Widerstandsschalter, sogenannte Memristoren, welche wegen ihrer schnellen Schaltgeschwindigkeit, langen Speicherzeit und stabilen Haltbarkeit in den Fokus der Forschung gerückt sind. Das nichtflüchtige analoge bipolare Schalten des Widerstandwertes mit einem On/Off Verhältnis größer als 100 wurde in BiFeO 3 (BFO)-basierten Widerstands-schaltern beobachtet. Bisher wurden Widerstandsschalter hauptsächlich als Speicher oder in rekonfigurierbaren Logikschaltungen verwendet. Aufgrund der ausgezeichneten Eigenschaften von BFO-basierten Memristoren, ist die Untersuchung weiterer neuer Funktionalitäten vielversprechend. Als neuer Ansatz für ein Hardware-basiertes Kryptosystem wird in der vorliegenden Arbeit die Ausnutzung des Leistungsübertragungskoeffizienten in BFO Memristoren vorgeschlagen. Mit Hilfe der unterschiedlichen Oberschwingungen, welche von einem BFO Memristor im ON und OFF Zustand generiert werden, wurde ein Kryptosystem zum Kodieren binärer Daten entwickelt. Ein Test des Hardware-basierten Kryptosystems an Biodaten ergab, dass die kodierten Biodaten keine vorhersagbare Korrelation mehr enthielten. In der vorliegenden Arbeit wurden darüberhinaus BFO-basierte künstliche Synapsen mit einer Aktionspotentials-Intervall abhängigen Plastizität (STDP) für Einzelpulse entwickelt. Diese Einzelpuls-STDP legt den Grundstein für energieffiziente und schnelle neuromorphe Netzwerke mit künstlichen Synapsen. Im Vergleich zu biologischen Synapsen mit einer 60-80-Puls-STDP und einem Lernfenster auf der ms-Zeitskale, konnte das Lernfenster von BFO-basierten künstlichen Synapsen von 25 ms auf 125 μs reduziert werden. Solch ein schnelles Lernen ermöglicht auch die extreme Reduzierung des Leistungsverbrauchs in neuromorphen Netzwerken.
23

Beyond "More than Moore": Novel applications of BiFeO3 (BFO)-based nonvolatile resistive switches

Du, Nan 07 April 2016 (has links)
The size reduction of transistors has been the main reason for a successful development of semiconductor integrated circuits over the last decades. Because of the physically limited downscaling of transistors, alternative technologies namely the information processing and nonvolatile resistive switches (also termed memristors) have come into focus. Memristors reveal a fast switching speed, long retention time, and stable endurance. Nonvolatile analog bipolar resistive switching with a considerable large On/Off ratio is reported in BiFeO3 (BFO)-based resistive switches. So far resistive switches are mainly applied in memory applications or logic operations. Given the excellent properties of BFO based memristors, the further exploration of functionalities for memristive devices is required. A new approach for hardware based cryptographic system was developed within the framework of this dissertation. By studying the power conversion efficiencies on BFO memristor at various harmonics, it has been shown that two sets of clearly distinguishable power ratios are achievable when the BFO memristor is set into high or into low resistance state. Thus, a BFO-based binary encoding system can be established. As an example the unrecoverable seizure information from encoded medical data suggests the proper functioning of the proposed encryption system. Aside from cryptographic functionality, the single pairing spike timing dependent plasticity (STDP) in BFO-based artificial synapses is demonstrated, which can be considered as the cornerstone for energy-efficient and fast hardware-based neuromorphic networks. In comparison to the biological driven realistic way, only single one pairing of pre- and postsynaptic spikes is applied to the BFO-based artificial synapse instead of 60-80 pairings. Thus, the learning time constant of STDP function can be reduced from 25 ms to 125 us. / In den letzten Jahrzehnten war die Größenreduktion von Transistoren einer der Hauptgründe für die Leistungssteigerung von integrierten Halbleiterschaltungen. Aufgrund des physikalisch beschränkten Skalierungspotentials, werden alternative Technologien für Halbleiterschaltungen entwickelt. Dazu zählen neuartige Widerstandsschalter, sogenannte Memristoren, welche wegen ihrer schnellen Schaltgeschwindigkeit, langen Speicherzeit und stabilen Haltbarkeit in den Fokus der Forschung gerückt sind. Das nichtflüchtige analoge bipolare Schalten des Widerstandwertes mit einem On/Off Verhältnis größer als 100 wurde in BiFeO 3 (BFO)-basierten Widerstands-schaltern beobachtet. Bisher wurden Widerstandsschalter hauptsächlich als Speicher oder in rekonfigurierbaren Logikschaltungen verwendet. Aufgrund der ausgezeichneten Eigenschaften von BFO-basierten Memristoren, ist die Untersuchung weiterer neuer Funktionalitäten vielversprechend. Als neuer Ansatz für ein Hardware-basiertes Kryptosystem wird in der vorliegenden Arbeit die Ausnutzung des Leistungsübertragungskoeffizienten in BFO Memristoren vorgeschlagen. Mit Hilfe der unterschiedlichen Oberschwingungen, welche von einem BFO Memristor im ON und OFF Zustand generiert werden, wurde ein Kryptosystem zum Kodieren binärer Daten entwickelt. Ein Test des Hardware-basierten Kryptosystems an Biodaten ergab, dass die kodierten Biodaten keine vorhersagbare Korrelation mehr enthielten. In der vorliegenden Arbeit wurden darüberhinaus BFO-basierte künstliche Synapsen mit einer Aktionspotentials-Intervall abhängigen Plastizität (STDP) für Einzelpulse entwickelt. Diese Einzelpuls-STDP legt den Grundstein für energieffiziente und schnelle neuromorphe Netzwerke mit künstlichen Synapsen. Im Vergleich zu biologischen Synapsen mit einer 60-80-Puls-STDP und einem Lernfenster auf der ms-Zeitskale, konnte das Lernfenster von BFO-basierten künstlichen Synapsen von 25 ms auf 125 μs reduziert werden. Solch ein schnelles Lernen ermöglicht auch die extreme Reduzierung des Leistungsverbrauchs in neuromorphen Netzwerken.

Page generated in 0.1382 seconds