• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quelques méthodes numériques pour le calcul de fonctions splines à une et plusieurs variables.

Paihua Montes, Luis 11 May 1978 (has links) (PDF)
Etude de la stabilité numérique de deux méthodes utilisées pour l'obtention de fonctions splines.
2

Analyse par éléments finis stochastiques de la propagation d'incertitudes dans un modèle mécanique non linéaire

Baroth, Julien 21 October 2005 (has links) (PDF)
Alternatives aux méthodes de Monte-Carlo pour le traitement des problèmes de propagation d'incer- titudes dans les modèles mécaniques structuraux, les méthodes d'éléments finis stochastiques (MEFS) connaissent un succès grandissant depuis une dizaine d'années, concrétisée par de nombreux travaux de recherche internationaux. Le présent travail est une contribution à ces recherches et son but est double. D'une part, considérant la MEFS spectrale (Ghanem & Spanos, 1991), qui est actuellement très utilisée, nous en faisons une présentation détaillée afin d'en cerner les limites. Cette méthode, essentiellement valable pour les problèmes linéaires, présente l'internet de permettre l'emploi, non seulement de variables aléatoires mais également de processus ou champs stochastiques pour la modélisation probabiliste des paramètres incertains du modèle. Deux applications, l'une sur une barre en traction, l'autre sur une structure formée de poutres modélisant un assemblage bois, permettent de juger de ses possibilités. D'autre part, et c'est le coeur du travail, nous proposons une MEFS originale pour la résolution de problèmes mécaniquement non linéaires. Cette approche, de type surface de réponse, comprend deux étapes clés : une projection de la réponse mécanique non linéaire sur une base de polynomes d'Hermite et une approximation de cette réponse par B-splines cubiques interpolantes pour le calcul des coeficients de la projection. Sa pertinence vis-à-vis de l'estimation des moments de la réponse est jugée à travers quatre exemples de complexité variable : un treillis élastoplastique, une sphère élastoplastique sous pression et un cylindre en contact avec un plan, étudiée en phases élastique puis élastoplastique.
3

Sur des techniques déterministes et stochastiques appliquées aux problèmes d'identification

Dousteyssier-Buvat, Hélène 19 September 1995 (has links) (PDF)
Ce travail porte sur les aspects numériques de la résolution de problèmes inverses non linéaires gouvernés par des équations aux dérivées partielles, à l'aide des techniques du contrôle optimal. Nous nous sommes limités dans cette thèse à l'étude de deux problèmes: identification du coefficient de diffusion de la chaleur, identification de sources non linéaires dans des e.d.p. elliptiques. Ces deux problèmes sont résolus numériquement à l'aide d'une approche lagrangienne, les fonctions sont identifiées par leurs coefficients dans une base de B-splines cubiques. Ces problèmes étant mal posés, on étudie des techniques de choix du paramètre de régularisation de Tikhonov, comme les méthodes de validation croisée. On résout ensuite ces deux problèmes dans une base d'ondelettes, ce qui nous permet, par le biais d'un changement de base approprié, de réduire le caractère mal posé de ces problèmes, et de mener à bien l'identification sans terme de régularisation. Dans les problèmes réels, la solution exacte étant généralement inconnue, lorsqu'on dispose d'un estimateur, il n'est a priori pas possible de savoir s'il s'agit d'un «bon» estimateur. On peut remédier à ce problème à l'aide des courbures de la surface des réponses, qui nous permettent de quantifier le degré de non linéarité de la surface au voisinage de l'estimateur obtenu et de justifier l'usage des méthodes séquentielles quadratiques utilisées pour l'identification
4

Les courbes algébriques trigonométriques à hodographe pythagorien pour résoudre des problèmes d'interpolation deux et trois-dimensionnels et leur utilisation pour visualiser les informations dentaires dans des volumes tomographiques 3D / Algebraic-trigonometric Pythagorean hodograph curves for solving planar and spatial interpolation problems and their use for visualizing dental information within 3D tomographic volumes

González, Cindy 25 January 2018 (has links)
Les problèmes d'interpolation ont été largement étudiés dans la Conception Géométrique Assistée par Ordinateur. Ces problèmes consistent en la construction de courbes et de surfaces qui passent exactement par un ensemble de données. Dans ce cadre, l'objectif principal de cette thèse est de présenter des méthodes d'interpolation de données 2D et 3D au moyen de courbes Algébriques Trigonométriques à Hodographe Pythagorien (ATPH). Celles-ci sont utilisables pour la conception de modèles géométriques dans de nombreuses applications. En particulier, nous nous intéressons à la modélisation géométrique d'objets odontologiques. À cette fin, nous utilisons les courbes spatiales ATPH pour la construction de surfaces développables dans des volumes odontologiques. Initialement, nous considérons la construction de courbes planes ATPH avec continuité C² qui interpolent une séquence ordonnée de points. Nous employons deux méthodes pour résoudre ce problème et trouver la « bonne » solution. Nous étendons les courbes ATPH planes à l'espace tridimensionnel. Cette caractérisation 3D est utilisée pour résoudre le problème d'interpolation Hermite de premier ordre. Nous utilisons ces splines ATPH spatiales C¹ continues pour guider des facettes développables, qui sont déployées à l'intérieur de volumes tomodensitométriques odontologiques, afin de visualiser des informations d'intérêt pour le professionnel de santé. Cette information peut être utile dans l'évaluation clinique, diagnostic et/ou plan de traitement. / Interpolation problems have been widely studied in Computer Aided Geometric Design (CAGD). They consist in the construction of curves and surfaces that pass exactly through a given data set, such as point clouds, tangents, curvatures, lines/planes, etc. In general, these curves and surfaces are represented in a parametrized form. This representation is independent of the coordinate system, it adapts itself well to geometric transformations and the differential geometric properties of curves and surfaces are invariant under reparametrization. In this context, the main goal of this thesis is to present 2D and 3D data interpolation schemes by means of Algebraic-Trigonometric Pythagorean-Hodograph (ATPH) curves. The latter are parametric curves defined in a mixed algebraic-trigonometric space, whose hodograph satisfies a Pythagorean condition. This representation allows to analytically calculate the curve's arc-length as well as the rational-trigonometric parametrization of the offsets curves. These properties are usable for the design of geometric models in many applications including manufacturing, architectural design, shipbuilding, computer graphics, and many more. In particular, we are interested in the geometric modeling of odontological objects. To this end, we use the spatial ATPH curves for the construction of developable patches within 3D odontological volumes. This may be a useful tool for extracting information of interest along dental structures. We give an overview of how some similar interpolating problems have been addressed by the scientific community. Then in chapter 2, we consider the construction of planar C2 ATPH spline curves that interpolate an ordered sequence of points. This problem has many solutions, its number depends on the number of interpolating points. Therefore, we employ two methods to find them. Firstly, we calculate all solutions by a homotopy method. However, it is empirically observed that only one solution does not have any self-intersections. Hence, the Newton-Raphson iteration method is used to directly compute this \good" solution. Note that C2 ATPH spline curves depend on several free parameters, which allow to obtain a diversity of interpolants. Thanks to these shape parameters, the ATPH curves prove to be more exible and versatile than their polynomial counterpart, the well known Pythagorean-Hodograph (PH) quintic curves and polynomial curves in general. These parameters are optimally chosen through a minimization process of fairness measures. We design ATPH curves that closely agree with well-known trigonometric curves by adjusting the shape parameters. We extend the planar ATPH curves to the case of spatial ATPH curves in chapter 3. This characterization is given in terms of quaternions, because this allows to properly analyze their properties and simplify the calculations. We employ the spatial ATPH curves to solve the first-order Hermite interpolation problem. The obtained ATPH interpolants depend on three free angular values. As in the planar case, we optimally choose these parameters by the minimization of integral shape measures. This process is also used to calculate the C1 interpolating ATPH curves that closely approximate well-known 3D parametric curves. To illustrate this performance, we present the process for some kind of helices. In chapter 4 we then use these C1 ATPH splines for guiding developable surface patches, which are deployed within odontological computed tomography (CT) volumes, in order to visualize information of interest for the medical professional. Particularly, we construct piecewise conical surfaces along smooth ATPH curves to display information related to the anatomical structure of human jawbones. This information may be useful in clinical assessment, diagnosis and/or treatment plan. Finally, the obtained results are analyzed and conclusions are drawn in chapter 5.

Page generated in 0.0559 seconds