1 |
Cognitive bases of spontaneous shortcut use in primary school arithmeticGodau, Claudia 22 January 2015 (has links)
Aufgabengeeignete Rechenstrategien flexibel zu nutzen ist ein wichtiges Ziel mathematischer Bildung und Bestandteil der Bildungsstandards der Grundschulmathematik. Kinder sollen spontan entscheiden, ob sie arithmetische Aufgaben in üblicher Weise berechnen oder ob sie Zeit und Aufwand investieren, um nach Vereinfachungsstrategien zu suchen und diese anzuwenden. Der Schwerpunkt der aktuellen Arbeit ist, wie Schüler beim flexiblen Erkennen und Anwenden von Vereinfachungsstrategien unterstützt werden können. Kontextfaktoren werden untersucht, welche die spontane Nutzung von Vereinfachungsstrategien unterstützen und den Transfer zwischen ihnen beeinflussen. Kognitive Theorien über die Entwicklung von mathematischen Konzepten und Strategien wurden mit Erkenntnissen aus der Expertise Forschung verbunden, welche die Unterschiede in der Flexibilität zwischen Experten und Novizen offen legen. Im Rahmen der iterativen Entwicklung von mathematischen Konzepten könnte ein erfolgreiches Erkennen und Anwenden einer Vereinfachungsstrategie von Faktoren, die konzeptionelles und/oder prozedurales Wissen aktivieren, profitieren. Am Beispiel von Vereinfachungsstrategien, die auf dem Kommutativgesetz (a + b = b + a) basieren, werden drei Kontextfaktoren (Instruktion, Assoziation und Schätzen), die spontanen Strategiegebrauch unterstützen oder behindern, untersucht. Insgesamt zeigt die Dissertation, dass spontane Strategienutzung durch bestimmte Kontextfaktoren unterstützt und durch Andere behindert werden kann. Diese Kontextfaktoren können im Prinzip in der Schulumgebung gesteuert werden. / Flexible use of task-appropriate solving strategies is an important goal in mathematical education and educational standard of elementary school mathematics. Children need to decide spontaneously whether they calculate arithmetic problems the usual way or whether they invest time and effort to search for shortcut options and apply them. The focus of the current work lies on how students can be supported in spotting and applying shortcut strategies flexibly. Contextual factors are investigated that support the spontaneous usage of shortcuts and influences the transfer between them. Cognitive theories about how mathematical concepts and strategies develop were combined with findings from research on expertise, which disclose differences between the flexibility of experts and novices. In line with iterativ development of mathematical concepts successfully spotting and applying a shortcut might thus benefit from factors activating conceptual and/or procedural knowledge. Shortcuts based on commutativity (a + b = b + a) are used as a test case to investigat three contextual factors (instruction, association and estimation), which support or hinder spontaneous strategy use. Overall, the dissertation shows that spontaneous strategy use can be supported by some contextual factors and impeded by others. These contextual factors can, in principle, be controlled in school environment.
|
Page generated in 0.1253 seconds