• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 23
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 91
  • 91
  • 48
  • 32
  • 29
  • 28
  • 23
  • 19
  • 19
  • 17
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Magnetic Characterization of the Nugget Microstructure at Resistance Spot Welding

Mathiszik, Christian, Zschetzsche, Edwin, Reinke, André, Koal, Johannes, Zschetzsche, Jörg, Füssel, Uwe 22 May 2024 (has links)
Conventional resistance spot welds are not visible from the outside. Therefore, it is not straightforward to evaluate the joint quality non-destructively. The pulse-echo method of manual ultrasonic is widely used for non-destructive testing. Another option is the passive magnetic flux density testing, which is being developed at Technische Universität Dresden, Germany. The spot weld is magnetized in the normal direction and the residual magnetic flux density is measured on top of the surface of the joint. This method is suitable for spot welds on typical car body steels. Previous investigations show that the magnetic properties of the materials influence the test result. In order to develop this new non-destructive testing method further, it is necessary to know the magnetic properties of the different microstructure regions of a spot weld. This article focuses on methods to measure and evaluate the magnetic properties of these regions, especially of the base material and the weld. Different measuring methods and approaches are presented and compared with each other. Based on the results, recommendations for future measurements for magnetic characterizations are given.

Page generated in 0.0359 seconds