• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic Question Paraphrasing in Swedish with Deep Generative Models / Automatisk frågeparafrasering på svenska med djupa generativa modeller

Lindqvist, Niklas January 2021 (has links)
Paraphrase generation refers to the task of automatically generating a paraphrase given an input sentence or text. Paraphrase generation is a fundamental yet challenging natural language processing (NLP) task and is utilized in a variety of applications such as question answering, information retrieval, conversational systems etc. In this study, we address the problem of paraphrase generation of questions in Swedish by evaluating two different deep generative models that have shown promising results on paraphrase generation of questions in English. The first model is a Conditional Variational Autoencoder (C-VAE) and the other model is an extension of the first one where a discriminator network is introduced into the model to form a Generative Adversarial Network (GAN) architecture. In addition to these models, a method not based on machine-learning was implemented to act as a baseline. The models were evaluated using both quantitative and qualitative measures including grammatical correctness and equivalence to source question. The results show that the deep generative models outperformed the baseline across all quantitative metrics. Furthermore, from the qualitative evaluation it was shown that the deep generative models outperformed the baseline at generating grammatically correct sentences, but there was no noticeable difference in terms of equivalence to the source question between the models. / Parafrasgenerering syftar på uppgiften att, utifrån en given mening eller text, automatiskt generera en parafras, det vill säga en annan text med samma betydelse. Parafrasgenerering är en grundläggande men ändå utmanande uppgift inom naturlig språkbehandling och används i en rad olika applikationer som informationssökning, konversionssystem, att besvara frågor givet en text etc. I den här studien undersöker vi problemet med parafrasgenerering av frågor på svenska genom att utvärdera två olika djupa generativa modeller som visat lovande resultat på parafrasgenerering av frågor på engelska. Den första modellen är en villkorsbaserad variationsautokodare (C-VAE). Den andra modellen är också en C-VAE men introducerar även en diskriminator vilket gör modellen till ett generativt motståndarnätverk (GAN). Förutom modellerna presenterade ovan, implementerades även en icke maskininlärningsbaserad metod som en baslinje. Modellerna utvärderades med både kvantitativa och kvalitativa mått inklusive grammatisk korrekthet och likvärdighet mellan parafras och originalfråga. Resultaten visar att de djupa generativa modellerna presterar bättre än baslinjemodellen på alla kvantitativa mätvärden. Vidare, visade the kvalitativa utvärderingen att de djupa generativa modellerna kunde generera grammatiskt korrekta frågor i större utsträckning än baslinjemodellen. Det var däremot ingen större skillnad i semantisk ekvivalens mellan parafras och originalfråga för de olika modellerna.
2

Fine-Tuning Pre-Trained Language Models for CEFR-Level and Keyword Conditioned Text Generation : A comparison between Google’s T5 and OpenAI’s GPT-2 / Finjustering av förtränade språkmodeller för CEFR-nivå och nyckelordsbetingad textgenerering : En jämförelse mellan Googles T5 och OpenAIs GPT-2

Roos, Quintus January 2022 (has links)
This thesis investigates the possibilities of conditionally generating English sentences based on keywords-framing content and different difficulty levels of vocabulary. It aims to contribute to the field of Conditional Text Generation (CTG), a type of Natural Language Generation (NLG), where the process of creating text is based on a set of conditions. These conditions include words, topics, content or perceived sentiments. Specifically, it compares the performances of two well-known model architectures: Sequence-toSequence (Seq2Seq) and Autoregressive (AR). These are applied to two different tasks, individual and combined. The Common European Framework of Reference (CEFR) is used to assess the vocabulary level of the texts. In the absence of openly available CEFR-labelled datasets, the author has developed a new methodology with the host company to generate suitable datasets. The generated texts are evaluated on accuracy of the vocabulary levels and readability using readily available formulas. The analysis combines four established readability metrics, and assesses classification accuracy. Both models show a high degree of accuracy when classifying texts into different CEFR-levels. However, the same models are weaker when generating sentences based on a desired CEFR-level. This study contributes empirical evidence suggesting that: (1) Seq2Seq models have a higher accuracy than AR models in generating English sentences based on a desired CEFR-level and keywords; (2) combining Multi-Task Learning (MTL) with instructiontuning is an effective way to fine-tune models on text-classification tasks; and (3) it is difficult to assess the quality of computer generated language using only readability metrics. / I den här studien undersöks möjligheterna att villkorligt generera engelska meningar på så-kallad “naturligt” språk, som baseras på nyckelord, innehåll och vokabulärnivå. Syftet är att bidra till området betingad textgenerering, en underkategori av naturlig textgenerering, vilket är en metod för att skapa text givet vissa ingångsvärden, till exempel ämne, innehåll eller uppfattning. I synnerhet jämförs prestandan hos två välkända modellarkitekturer: sekvenstill-sekvens (Seq2Seq) och autoregressiv (AR). Dessa tillämpas på två uppgifter, såväl individuellt som kombinerat. Den europeiska gemensamma referensramen (CEFR) används för att bedöma texternas vokabulärnivå. I och med avsaknaden av öppet tillgängliga CEFR-märkta dataset har författaren tillsammans med värdföretaget utvecklat en ny metod för att generera lämpliga dataset. De av modellerna genererade texterna utvärderas utifrån vokabulärnivå och läsbarhet samt hur väl de uppfyller den sökta CEFRnivån. Båda modellerna visade en hög träffsäkerhet när de klassificerar texter i olika CEFR-nivåer. Dock uppvisade samma modeller en sämre förmåga att generera meningar utifrån en önskad CEFR-nivå. Denna studie bidrar med empiriska bevis som tyder på: (1) att Seq2Seq-modeller har högre träffsäkerhet än AR-modeller när det gäller att generera engelska meningar utifrån en önskad CEFR-nivå och nyckelord; (2) att kombinera inlärning av multipla uppgifter med instruktionsjustering är ett effektivt sätt att finjustera modeller för textklassificering; (3) att man inte kan bedömma kvaliteten av datorgenererade meningar genom att endast använda läsbarhetsmått.

Page generated in 0.0923 seconds