221 |
The crustal structure and subsidence history of aseismic ridges and mid-plate island chainsDetrick, Robert Sherman January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Science. / Microfiche copy available in Archives and Science. / Vita. / Includes bibliographies. / by Robert Sherman Detrick, Jr. / Ph.D.
|
222 |
The evolution of the Indian Ocean triple junction and the finite rotation problemTapscott, Christopher Robert January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1979. / Microfiche copy available in Archives and Science. / Vita. / Includes bibliographies. / by Christopher Robert Tapscott. / Ph.D.
|
223 |
The origin of the ninetyeast ridge and the northward motion of India, based on DSDP paleolatitudes.Peirce, John Wentworth January 1977 (has links)
Thesis. 1977. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Vita. / Bibliography : leaves 223-233. / Ph.D.
|
224 |
A Real-time Dynamic Simulation Scheme for Large-Scale Flood Hazard Using 3D Real World DataPalmer, Ian J., Wang, Chen, Wan, Tao Ruan January 2007 (has links)
No / We propose a new dynamic simulation scheme for large-scale flood hazard modelling and prevention. The approach consists of a number of core parts: Digital terrain modelling with GIS data, Nona-tree space partitions (NTSP), Automatic River object recognition and registration, and a flood spreading model. The digital terrain modelling method allows the creation of a geometric real terrain model for augmented 3D environments with very large GIS data, and it can also use information gathered from aviation and satellite images with a ROAM algorithm. A spatial image segmentation scheme is described for river and flood identification and for a 3D terrain map of flooding region growth and visualisation. The region merging is then implemented by adopting Flood Region Spreading Algorithm (FRSA). Compared with the conventional methods, our approach has the advantages of being capable of realistically visualising the flooding in geometrically-real 3D environments, of handling dynamic flood behaviour in real-time and of dealing with very large-scale data modelling and visualisation.
|
225 |
Lateral Spreading Mechanics of Column-Supported EmbankmentsHuang, Zhanyu 07 November 2019 (has links)
Column-supported embankments (CSE) enable accelerated construction on soft soils, high performance, and protection of adjacent facilities. The foundation columns transfer embankment and service loading to a competent stratum at depth such that loading on the soft soil can be reduced. This has the beneficial effects of reducing settlement and lateral displacement, and improving stability. Selection of column type depends on the design load, cost, constructability, etc., although unreinforced concrete columns are commonly used. A load transfer platform (LTP) is often included at the embankment base. This is a layer of coarse-grained fill that may include one or more layers of geosynthetic reinforcement. The LTP improves vertical load transfer to columns by mobilizing the shear strength of the LTP fill and the membrane effect of the geosynthetic. The geosynthetic reinforcement also responds in tension to lateral spreading.
Herein, lateral spreading is defined as the lateral displacements occurring in response to lateral earth pressures in the embankment and foundation. Excessive lateral spreading can lead to bending failure of the concrete columns, tensile failure of the geosynthetic reinforcement, and instability of the system. Design procedures recommend inclusion of geosynthetic reinforcement to mitigate lateral spreading, with assumptions for the lateral thrust distribution, failure mode, and calculation of geosynthetic tensile capacity. The necessity and sufficiency of these assumptions have not been fully validated. In addition, unreinforced concrete columns have low tensile strength and can fail in bending, but recommendations for calculating column bending moments are not available. This research examines the limitations in CSE lateral spreading design with the goal of advancing fundamental understanding of lateral spreading mechanics.
The research was performed using three-dimensional finite difference analyses. Limiting conditions for lateral spreading analysis were identified using case history records, and an undrained-dissipated approach was validated for the numerical analysis of limiting conditions (i.e., undrained end-of-construction and long-term excess pore pressure dissipated). The numerical model was calibrated using a well-documented case history. Additional analyses of the case history were performed to examine the lateral earth pressures in the foundation, column bending moments, and geosynthetic contribution to resisting lateral spreading. A parametric study was conducted to examine the lateral thrust distribution in 128 CSE scenarios. A refined substructure model was adopted for analyzing peak geosynthetic tensions and strains. Lastly, failure analyses were performed to examine the effect of different CSE design parameters on embankment failure height, failure mode, and deformations.
The research produced qualitative and quantitative information about the following: (1) the percent thrust resistance provided by the geosynthetic as a function of its stiffness; (2) the geosynthetic contribution to ultimate and serviceability limit states; (3) the change in lateral thrust distribution throughout the embankment system before and after dissipation of excess pore water pressures; (4) the column-soil interactions involved in embankment failure; and (5) identification of two failure modes in the undrained condition. Design guidance based on these findings is provided. / Doctor of Philosophy / Column-supported embankments (CSEs) have been designated by the Federal Highway Administration as a critical technology for new highway alignment projects and widening of existing highways. CSEs enable accelerated construction and high performance in weak soils, which are factors critical to project success. In a CSE, columns are installed in the weak soil, followed by rapid construction of the soil embankment that provides the necessary elevation and foundation for the roadway. The columns transfer most of the embankment and traffic loading to a competent soil stratum at depth. Concrete without steel reinforcement is commonly used to construct the columns, although material selection depends on cost, constructability, expected load, etc. Layers of geosynthetic reinforcement can also be included at the embankment base. The geosynthetics help to transfer loads to the columns and resist excessive movement that could lead to instability. The entire embankment system should be designed for safety and economy.
This research was motivated by uncertainties in design to mitigate lateral spreading. Lateral spreading refers to lateral displacements occurring in response to lateral earth pressures in the embankment and foundation. Excessive lateral spreading can lead to failure of the columns, geosynthetic reinforcement, and the entire embankment system. This research aims to advance fundamental understanding of lateral spreading in CSEs and to re-evaluate current design assumptions. Corresponding design guidance is provided.
|
226 |
The Impact of Signal Bandwidth on Indoor Wireless Systems in Dense Multipath EnvironmentsHibbard, Daniel James 01 June 2004 (has links)
Recently there has been a significant amount of interest in the area of wideband and ultra-wideband (UWB) signaling for use in indoor wireless systems. This interest is in part motivated by the notion that the use of large bandwidth signals makes systems less sensitive to the degrading effects of multipath propagation. By reducing the sensitivity to multipath, more robust and higher capacity systems can be realized. However, as signal bandwidth is increased, the complexity of a Rake receiver (or other receiver structure) required to capture the available power also increases. In addition, accurate channel estimation is required to realize this performance, which becomes increasingly difficult as energy is dispersed among more multipath components.
In this thesis we quantify the channel response for six signal bandwidths ranging from continuous wave (CW) to 1 GHz transmission bandwidths. We present large scale and small scale fading statistics for both LOS and NLOS indoor channels based on an indoor measurement campaign conducted in Durham Hall at Virginia Tech. Using newly developed antenna positioning equipment we also quantify the spatial correlation of these signals. It is shown that the incremental performance gains due to reduced fading of large bandwidths level off as signals approach UWB bandwidths. Furthermore, we analyze the performance of Rake receivers for the different signal bandwidths and compare their performance for binary phase modulation (BPSK). It is shown that the receiver structure and performance is critical in realizing the reduced fading benefit of large signal bandwidths. We show practical channel estimation degrades performance more for larger bandwidths. We also demonstrate for a fixed finger Rake receiver there is an optimal signal bandwidth beyond which increased signal bandwidth produces degrading results. / Master of Science
|
227 |
Effects of phosphodiesterase inhibition on cortical spreading depression and associated changes in extracellular cyclic GMPUrenjak, Jutta A., Fedele, E., Obrenovitch, Tihomir P., Wang, M. January 2004 (has links)
No / Cortical spreading depression (CSD) is a temporary disruption of local ionic homeostasis that propagates slowly across the cerebral cortex, and may contribute to the pathophysiology of stroke and migraine. Previous studies demonstrated that nitric oxide (NO) formation promotes the repolarisation phase of CSD, and this effect may be cyclic GMP (cGMP)-mediated. Here, we have examined how phosphodiesterase (PDE) inhibition, either alone or superimposed on NO synthase (NOS) inhibition, alters CSD and the associated changes in extracellular cGMP. Microdialysis probes incorporating an electrode were implanted into the frontoparietal cortex of anaesthetised rats for quantitative recording of CSD, pharmacological manipulations, and dialysate sampling for cGMP measurements. CSD was induced by cathodal electrical stimulation in the region under study by microdialysis. Extracellular cGMP increased, but only slightly, during CSD. Perfusion of either zaprinast or sildenafil through the microdialysis probe, at concentrations that inhibited both PDE5 and PDE9 (and possibly other PDE), increased significantly extracellular cGMP. Unexpectedly, these levels remained high when NOS was subsequently inhibited with N¿-nitro- -arginine methyl ester hydrochloride ( -NAME, 1 mM). The most interesting pharmacological effect on CSD was obtained with sildenafil. This drug altered neither CSD nor the subsequent characteristic effect of NOS inhibition, i.e. a marked widening of CSD. The fact that NOS inhibition still widened CSD in the presence of the high extracellular levels of cGMP associated with PDE inhibition, suggests that NO may promote CSD recovery, independently of cGMP formation.
|
228 |
Spreading depression-induced preconditioning in the mouse cortex: differential changes in the protein expression of ionotropic nicotinic acetylcholine and glutamate receptors.Chazot, P.L., Godukhin, O.V., McDonald, A., Obrenovitch, Tihomir P. January 2002 (has links)
No / Preconditioning of the cerebral cortex was induced in mice by repeated cortical spreading depression (CSD), and the major ionotropic glutamate (GluRs) and nicotinic acetylcholine receptor (nAChRs) subunits were compared by quantitative immunoblotting between sham- and preconditioned cortex, 24 h after treatment. A 30% reduction in ¿-amino-3-hydroxy-5-methyl-4-iso- xazolepropionate (AMPA) GluR1 and 2 subunit immunoreactivities was observed in the preconditioned cortex (p < 0.03), but there was no significant change in the NMDA receptor subunits, NR1, NR2A and NR2B. A 12¿15-fold increase in ¿7 nAChR subunit expression following in vivo CSD (p < 0.001) was by far the most remarkable change associated with preconditioning. In contrast, the ¿4 nAChR subunit was not altered. These data point to the ¿7 nAChR as a potential new target for neuroprotection because preconditioning increases consistently the tolerance of the brain to acute insults such as ischaemia. These data complement recent studies implicating ¿7 nAChR overexpression in the amelioration of chronic neuropathologies, notably Alzheimer's disease (AD).
|
229 |
Nitric oxide formation during cortical spreading depression is critical for rapid subsequent recovery of ionic homeostasisUrenjak, Jutta A., Obrenovitch, Tihomir P., Wang, M. 2009 July 1927 (has links)
No / Cortical spreading depression (CSD) is a temporary disruption of local ionic homeostasis that propagates slowly across the cerebral cortex. Cortical spreading depression promotes lesion progression in experimental stroke, and may contribute to the initiation of migraine attacks. The purpose of this study was to investigate the roles of the marked increase of nitric oxide (NO) formation that occurs with CSD. Microdialysis electrodes were implanted in the cortex of anesthetized rats to perform the following operations within the same region: (1) elicitation of CSD by perfusion of high K+ medium; (2) recording of CSD elicitation; (3) application of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME); and (4) recording of dialysate pH changes. The primary effect of L-NAME (0.3 to 3.0 mmol/L in the perfusion medium) was a marked widening of individual CSD wave, resulting essentially from a delayed initiation of the repolarization phase. This change was due to NO synthase inhibition because it was not observed with the inactive isomer D-NAME, and was reversed by L-arginine. This effect did not appear to be linked to the suppression of a sustained, NO-mediated vascular change associated with the superposition of NO synthase inhibition on high levels of extracellular K+. The delayed initiation of repolarization with local NO synthase inhibition may reflect the suppression of NO-mediated negative feedback mechanisms acting on neuronal or glial processes involved in CSD genesis. However, the possible abrogation of a very brief, NO-mediated vascular change associated with the early phase of CSD cannot be ruled out.
|
230 |
Large-scale 3D environmental modelling and visualisation for flood hazard warningWang, Chen January 2009 (has links)
3D environment reconstruction has received great interest in recent years in areas such as city planning, virtual tourism and flood hazard warning. With the rapid development of computer technologies, it has become possible and necessary to develop new methodologies and techniques for real time simulation for virtual environments applications. This thesis proposes a novel dynamic simulation scheme for flood hazard warning. The work consists of three main parts: digital terrain modelling; 3D environmental reconstruction and system development; flood simulation models. The digital terrain model is constructed using real world measurement data of GIS, in terms of digital elevation data and satellite image data. An NTSP algorithm is proposed for very large data assessing, terrain modelling and visualisation. A pyramidal data arrangement structure is used for dealing with the requirements of terrain details with different resolutions. The 3D environmental reconstruction system is made up of environmental image segmentation for object identification, a new shape match method and an intelligent reconstruction system. The active contours-based multi-resolution vector-valued framework and the multi-seed region growing method are both used for extracting necessary objects from images. The shape match method is used with a template in the spatial domain for a 3D detailed small scale urban environment reconstruction. The intelligent reconstruction system is designed to recreate the whole model based on specific features of objects for large scale environment reconstruction. This study then proposes a new flood simulation scheme which is an important application of the 3D environmental reconstruction system. Two new flooding models have been developed. The first one is flood spreading model which is useful for large scale flood simulation. It consists of flooding image spatial segmentation, a water level calculation process, a standard gradient descent method for energy minimization, a flood region search and a merge process. The finite volume hydrodynamic model is built from shallow water equations which is useful for urban area flood simulation. The proposed 3D urban environment reconstruction system was tested on our simulation platform. The experiment results indicate that this method is capable of dealing with complicated and high resolution region reconstruction which is useful for many applications. When testing the 3D flood simulation system, the simulation results are very close to the real flood situation, and this method has faster speed and greater accuracy of simulating the inundation area in comparison to the conventional flood simulation models
|
Page generated in 0.0916 seconds