Spelling suggestions: "subject:"square""
881 |
Consumer Debt, Psychological Well-being, and Social InfluenceShen, Shuying January 2013 (has links)
No description available.
|
882 |
Development of novel unsupervised and supervised informatics methods for drug discovery applicationsMohiddin, Syed B. 22 February 2006 (has links)
No description available.
|
883 |
Multivariate Approaches for Relating Consumer Preference to Sensory CharacteristicsLiggett, Rachel Esther 01 November 2010 (has links)
No description available.
|
884 |
MTG-kortsprissättning: en regressionsanalys för att bestämma nyckelfaktorer för kortpriser / MTG Card Pricing: a Regression Analysis of Determining Key Factors of Card PricesMichael, Adam January 2023 (has links)
Genom att analysera kortegenskaperna hos Magic the Gathering-kort harmodeller tagits fram för att bestämma deras inverkan på kortpriset. Tidigarestudier har inte fokuserat på spel-egenskaperna, vilket är vad som särskiljer dettaarbete från tidigare forskning. För att modellera effekten av spel-egenskapernahar dessa kvantifierats och undersökts med hjälp av Minsta-kvadratmetoden ochLasso-regression, med hjälp av programmeringsspråket R. Resultaten indikeraratt faktorer direkt kopplade till samlarbarhet och spelbarhet har den störstainverkan på priset för Magic the Gathering-kort. Dessa resultat har diskuteratsmed utgångspunkt från olika perspektiv, såsom Wizards of the Coast (utgivarenav Magic the Gathering), spelare, samlare och investerare. Genom att fokusera påspel-egenskaperna har denna studie bidragit till området på ett sätt som tidigareforskning inte har gjort, vilket ger en mer helhetsbild av Magic the Gathering-kortsvärde. / By analyzing the card properties of Magic the Gathering cards, models have beendeveloped to determine their impact on card prices. Previous studies have notfocused on gameplay properties, which distinguishes this work from previousresearch. To model the effect of gameplay properties, they have been quantifiedand examined using Least Squares Method and Lasso Regression, with the helpof the programming language R. The results indicate that factor directly relateradto collectability and playability have the greatest impact on the price of Magic theGathering cards. These results have been discussed from various perspectives,such as Wizards of the Coast (the publisher of Magic the Gathering), players,collectors, and investors. By focusing on gameplay properties, this study hascontributed to the field in a way that previous research has not, providing a morecomprehensive understanding of the value of Magic the Gathering cards.
|
885 |
Development of practical soft sensors for water content monitoring in fluidized bed granulation considering pharmaceutical lifecycle / 医薬品ライフサイクルに応じた流動層造粒中水分含量モニタリングのための実用的なソフトセンサーの開発Yaginuma, Keita 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24041号 / 情博第797号 / 新制||情||135(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 加納 学, 教授 下平 英寿, 教授 石井 信 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
886 |
DEVELOPMENT OF NON-DESTRUCTIVE INFRARED FIBER OPTIC METHOD FOR ASSESSMENT OF LIGAMENT AND TENDON COMPOSITIONPadalkar, Mugdha Vijay January 2016 (has links)
More than 350,000 anterior cruciate ligament (ACL) injuries occur every year in the United States. A torn ACL is typically replaced with an allograft or autograft tendon (patellar, quadriceps or hamstring), with the choice of tissue generally dictated by surgeon preference. Despite the number of ACL reconstructions performed every year, the process of ligamentization, transformation of a tendon graft to a healthy functional ligament, is poorly understood. Previous research studies have relied on mechanical, biochemical and histological studies. However, these methods are destructive. Clinically, magnetic resonance imaging (MRI) is the most common method of graft evaluation, but it lacks adequate resolution and molecular specificity. There is a need for objective methodology to study the ligament repair process that would ideally be non- or minimally invasive. Development of such a method could lead to a better understanding of the effects of therapeutic interventions and rehabilitation protocols in animal models of ligamentization, and ultimately, in clinical studies. Fourier transform infrared (FT-IR) spectroscopy is a technique sensitive to molecular structure and composition in tissues. FT-IR fiber optic probes combined with arthroscopy could prove to be an important tool where minimally invasive tissue assessment is required, such as assessment of graft composition during the ligamentization process. Spectroscopic methods have been used to differentiate normal and diseased connective tissues, but have not been applied to investigate ligamentization, or to investigate differences in tendons and ligaments. In the proposed studies, we hypothesize that infrared spectroscopy can provide molecular information about the compositional differences between tendons and ligaments, which can serve as a foundation to non-destructively monitor the tissue transformation that occurs during ligamentization. / Bioengineering
|
887 |
Synthesis of Catalytic Membrane Surface Composites for Remediating Azo Dyes in SolutionSutherland, Alexander January 2019 (has links)
In the past 30 years zero-valent iron (ZVI) has become an increasingly popular reducing agent technology for remediating environmental contaminants prone to chemical degradation. Azo dyes and chlorinated organic compounds (COCs) are two classes of such contaminants, both of which include toxic compounds with known carcinogenic potential. ZVI has been successfully applied to the surfaces of permeable reactive barriers, as well as grown into nanoscale particles (nZVI) and applied in-situ to chemically reduce these contaminants into more environmentally benign compounds. However, the reactivity of ZVI and nZVI in these technologies is limited by their finite supply of electrons for facilitating chemical reduction, and the tendency of nZVI particles to homo-aggregate in solution and form colloids with reduced surface area to volume ratio, and thus reduced reactivity. The goal of this project was to combine reactive nanoparticle and membrane technologies to create an electro-catalytic permeable reactive barrier that overcomes the weaknesses of nZVI for the enhanced electrochemical filtration of azo dyes in solution. Specifically, nZVI was successfully grown and stabilized in a network of functionalized carbon nanotubes (CNTs) and deposited into an electrically conductive thin film on the surface of a polymeric microfiltration support membrane. Under a cathodic applied voltage, this thin film facilitated the direct reduction of the methyl orange (MO) azo dye in solution, and regenerated nZVI reactivity for enhanced electro-catalytic operation. The electro-catalytic performance of these nZVI-CNT membrane surface composites to remove MO was validated, modelled, and optimized in a batch system, as well as tested in a dead-end continuous flow cell system. In the batch experiments, systems with nZVI and a -2 V applied potential demonstrated synergistic enhancement of MO removal, which indicated the regeneration of nZVI reactivity and allowed for the complete removal of 0.25 mM MO batches within 2-3 hours. Partial least squares regression (PLSR) modelling was used to determine the impact of each experimental parameter in the batch system and provided the means for an optimization leading to maximized MO removal. Finally, tests in a continuous system yielded rates of MO removal 1.6 times greater than those of the batch system in a single pass, and demonstrated ~87% molar removal of MO at fluxes of approximately 422 lmh. The work herein lays the foundation for a promising technology that, if further developed, could be applied to remediate azo dyes and COCs in textile industry effluents and groundwater sites respectively. / Thesis / Master of Applied Science (MASc)
|
888 |
Contributions to fuzzy polynomial techniques for stability analysis and controlPitarch Pérez, José Luis 07 January 2014 (has links)
The present thesis employs fuzzy-polynomial control techniques in order to
improve the stability analysis and control of nonlinear systems. Initially, it
reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems,
such as the more relevant results about polynomial and fuzzy polynomial
systems. The basic framework uses fuzzy polynomial models by Taylor series
and sum-of-squares techniques (semidefinite programming) in order to obtain
stability guarantees.
The contributions of the thesis are:
¿ Improved domain of attraction estimation of nonlinear systems for both
continuous-time and discrete-time cases. An iterative methodology based
on invariant-set results is presented for obtaining polynomial boundaries
of such domain of attraction.
¿ Extension of the above problem to the case with bounded persistent disturbances
acting. Different characterizations of inescapable sets with
polynomial boundaries are determined.
¿ State estimation: extension of the previous results in literature to the
case of fuzzy observers with polynomial gains, guaranteeing stability of
the estimation error and inescapability in a subset of the zone where the
model is valid.
¿ Proposal of a polynomial Lyapunov function with discrete delay in order
to improve some polynomial control designs from literature. Preliminary
extension to the fuzzy polynomial case.
Last chapters present a preliminary experimental work in order to check
and validate the theoretical results on real platforms in the future. / Pitarch Pérez, JL. (2013). Contributions to fuzzy polynomial techniques for stability analysis and control [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34773
|
889 |
A Statistical Methodology for Classifying Time Series in the Context of Climatic DataRamírez Buelvas, Sandra Milena 24 February 2022 (has links)
[ES] De acuerdo con las regulaciones europeas y muchos estudios científicos, es necesario monitorear y analizar las condiciones microclimáticas en museos o edificios, para preservar las obras de arte en ellos. Con el objetivo de ofrecer herramientas para el monitoreo de las condiciones climáticas en este tipo de edificios, en esta tesis doctoral se propone una nueva metodología estadística para clasificar series temporales de parámetros climáticos como la temperatura y humedad relativa. La metodología consiste en aplicar un método de clasificación usando variables que se computan a partir de las series de tiempos. Los dos primeros métodos de clasificación son versiones conocidas de métodos sparse PLS que no se habían aplicado a datos correlacionados en el tiempo. El tercer método es una nueva propuesta que usa dos algoritmos conocidos. Los métodos de clasificación se basan en diferentes versiones de un método sparse de análisis discriminante de mínimos cuadra- dos parciales PLS (sPLS-DA, SPLSDA y sPLS) y análisis discriminante lineal (LDA). Las variables que los métodos de clasificación usan como input, corresponden a parámetros estimados a partir de distintos modelos, métodos y funciones del área de las series de tiempo, por ejemplo, modelo ARIMA estacional, modelo ARIMA- TGARCH estacional, método estacional Holt-Winters, función de densidad espectral, función de autocorrelación (ACF), función de autocorrelación parcial (PACF), rango móvil (MR), entre otras funciones. También fueron utilizadas algunas variables que se utilizan en el campo de la astronomía para clasificar estrellas. En los casos que a priori no hubo información de los clusters de las series de tiempos, las dos primeras componentes de un análisis de componentes principales (PCA) fueron utilizadas por el algoritmo k- means para identificar posibles clusters de las series de tiempo. Adicionalmente, los resultados del método sPLS-DA fueron comparados con los del algoritmo random forest. Tres bases de datos de series de tiempos de humedad relativa o de temperatura fueron analizadas. Los clusters de las series de tiempos se analizaron de acuerdo a diferentes zonas o diferentes niveles de alturas donde fueron instalados sensores para el monitoreo de las condiciones climáticas en los 3 edificios.El algoritmo random forest y las diferentes versiones del método sparse PLS fueron útiles para identificar las variables más importantes en la clasificación de las series de tiempos. Los resultados de sPLS-DA y random forest fueron muy similares cuando se usaron como variables de entrada las calculadas a partir del método Holt-Winters o a partir de funciones aplicadas a las series de tiempo. Aunque los resultados del método random forest fueron levemente mejores que los encontrados por sPLS-DA en cuanto a las tasas de error de clasificación, los resultados de sPLS- DA fueron más fáciles de interpretar. Cuando las diferentes versiones del método sparse PLS utilizaron variables resultantes del método Holt-Winters, los clusters de las series de tiempo fueron mejor discriminados. Entre las diferentes versiones del método sparse PLS, la versión sPLS con LDA obtuvo la mejor discriminación de las series de tiempo, con un menor valor de la tasa de error de clasificación, y utilizando el menor o segundo menor número de variables.En esta tesis doctoral se propone usar una versión sparse de PLS (sPLS-DA, o sPLS con LDA) con variables calculadas a partir de series de tiempo para la clasificación de éstas. Al aplicar la metodología a las distintas bases de datos estudiadas, se encontraron modelos parsimoniosos, con pocas variables, y se obtuvo una discriminación satisfactoria de los diferentes clusters de las series de tiempo con fácil interpretación. La metodología propuesta puede ser útil para caracterizar las distintas zonas o alturas en museos o edificios históricos de acuerdo con sus condiciones climáticas, con el objetivo de prevenir problemas de conservación con las obras de arte. / [CA] D'acord amb les regulacions europees i molts estudis científics, és necessari monitorar i analitzar les condiciones microclimàtiques en museus i en edificis similars, per a preservar les obres d'art que s'exposen en ells. Amb l'objectiu d'oferir eines per al monitoratge de les condicions climàtiques en aquesta mena d'edificis, en aquesta tesi es proposa una nova metodologia estadística per a classificar series temporals de paràmetres climàtics com la temperatura i humitat relativa.La metodologia consisteix a aplicar un mètode de classificació usant variables que es computen a partir de les sèries de temps. Els dos primers mètodes de classificació són versions conegudes de mètodes sparse PLS que no s'havien aplicat adades correlacionades en el temps. El tercer mètode és una nova proposta que usados algorismes coneguts. Els mètodes de classificació es basen en diferents versions d'un mètode sparse d'anàlisi discriminant de mínims quadrats parcials PLS (sPLS-DA, SPLSDA i sPLS) i anàlisi discriminant lineal (LDA). Les variables queels mètodes de classificació usen com a input, corresponen a paràmetres estimats a partir de diferents models, mètodes i funcions de l'àrea de les sèries de temps, per exemple, model ARIMA estacional, model ARIMA-TGARCH estacional, mètode estacional Holt-Winters, funció de densitat espectral, funció d'autocorrelació (ACF), funció d'autocorrelació parcial (PACF), rang mòbil (MR), entre altres funcions. També van ser utilitzades algunes variables que s'utilitzen en el camp de l'astronomia per a classificar estreles. En els casos que a priori no va haver-hi información dels clústers de les sèries de temps, les dues primeres components d'una anàlisi de components principals (PCA) van ser utilitzades per l'algorisme k-means per a identificar possibles clústers de les sèries de temps. Addicionalment, els resultats del mètode sPLS-DA van ser comparats amb els de l'algorisme random forest.Tres bases de dades de sèries de temps d'humitat relativa o de temperatura varen ser analitzades. Els clústers de les sèries de temps es van analitzar d'acord a diferents zones o diferents nivells d'altures on van ser instal·lats sensors per al monitoratge de les condicions climàtiques en els edificis.L'algorisme random forest i les diferents versions del mètode sparse PLS van ser útils per a identificar les variables més importants en la classificació de les series de temps. Els resultats de sPLS-DA i random forest van ser molt similars quan es van usar com a variables d'entrada les calculades a partir del mètode Holt-winters o a partir de funcions aplicades a les sèries de temps. Encara que els resultats del mètode random forest van ser lleument millors que els trobats per sPLS-DA quant a les taxes d'error de classificació, els resultats de sPLS-DA van ser més fàcils d'interpretar.Quan les diferents versions del mètode sparse PLS van utilitzar variables resultants del mètode Holt-Winters, els clústers de les sèries de temps van ser més ben discriminats. Entre les diferents versions del mètode sparse PLS, la versió sPLS amb LDA va obtindre la millor discriminació de les sèries de temps, amb un menor valor de la taxa d'error de classificació, i utilitzant el menor o segon menor nombre de variables.En aquesta tesi proposem usar una versió sparse de PLS (sPLS-DA, o sPLS amb LDA) amb variables calculades a partir de sèries de temps per a classificar series de temps. En aplicar la metodologia a les diferents bases de dades estudiades, es van trobar models parsimoniosos, amb poques variables, i varem obtindre una discriminació satisfactòria dels diferents clústers de les sèries de temps amb fácil interpretació. La metodologia proposada pot ser útil per a caracteritzar les diferents zones o altures en museus o edificis similars d'acord amb les seues condicions climàtiques, amb l'objectiu de previndre problemes amb les obres d'art. / [EN] According to different European Standards and several studies, it is necessary to monitor and analyze the microclimatic conditions in museums and similar buildings, with the goal of preserving artworks. With the aim of offering tools to monitor the climatic conditions, a new statistical methodology for classifying time series of different climatic parameters, such as relative humidity and temperature, is pro- posed in this dissertation.The methodology consists of applying a classification method using variables that are computed from time series. The two first classification methods are ver- sions of known sparse methods which have not been applied to time dependent data. The third method is a new proposal that uses two known algorithms. These classification methods are based on different versions of sparse partial least squares discriminant analysis PLS (sPLS-DA, SPLSDA, and sPLS) and Linear Discriminant Analysis (LDA). The variables that are computed from time series, correspond to parameter estimates from functions, methods, or models commonly found in the area of time series, e.g., seasonal ARIMA model, seasonal ARIMA-TGARCH model, seasonal Holt-Winters method, spectral density function, autocorrelation function (ACF), partial autocorrelation function (PACF), moving range (MR), among others functions. Also, some variables employed in the field of astronomy (for classifying stars) were proposed.The methodology proposed consists of two parts. Firstly, different variables are computed applying the methods, models or functions mentioned above, to time series. Next, once the variables are calculated, they are used as input for a classification method like sPLS-DA, SPLSDA, or SPLS with LDA (new proposal). When there was no information about the clusters of the different time series, the first two components from principal component analysis (PCA) were used as input for k-means method for identifying possible clusters of time series. In addition, results from random forest algorithm were compared with results from sPLS-DA.This study analyzed three sets of time series of relative humidity or temperate, recorded in different buildings (Valencia's Cathedral, the archaeological site of L'Almoina, and the baroque church of Saint Thomas and Saint Philip Neri) in Valencia, Spain. The clusters of the time series were analyzed according to different zones or different levels of the sensor heights, for monitoring the climatic conditions in these buildings.Random forest algorithm and different versions of sparse PLS helped identifying the main variables for classifying the time series. When comparing the results from sPLS-DA and random forest, they were very similar for variables from seasonal Holt-Winters method and functions which were applied to the time series. The results from sPLS-DA were easier to interpret than results from random forest. When the different versions of sparse PLS used variables from seasonal Holt- Winters method as input, the clusters of the time series were identified effectively.The variables from seasonal Holt-Winters helped to obtain the best, or the second best results, according to the classification error rate. Among the different versions of sparse PLS proposed, sPLS with LDA helped to classify time series using a fewer number of variables with the lowest classification error rate.We propose using a version of sparse PLS (sPLS-DA, or sPLS with LDA) with variables computed from time series for classifying time series. For the different data sets studied, the methodology helped to produce parsimonious models with few variables, it achieved satisfactory discrimination of the different clusters of the time series which are easily interpreted. This methodology can be useful for characterizing and monitoring micro-climatic conditions in museums, or similar buildings, for preventing problems with artwork. / I gratefully acknowledge the financial support of Pontificia Universidad Javeriana Cali – PUJ and Instituto Colombiano de Crédito Educativo y Estudios Técnicos en el Exterior – ICETEX who awarded me the scholarships ’Convenio de Capacitación para Docentes O. J. 086/17’ and ’Programa Crédito Pasaporte a la Ciencia ID 3595089 foco-reto salud’ respectively. The scholarships were essential for obtaining the Ph.D. Also, I gratefully acknowledge the financial support of the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 814624. / Ramírez Buelvas, SM. (2022). A Statistical Methodology for Classifying Time Series in the Context of Climatic Data [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181123
|
890 |
Development of Robust Correlation Algorithms for Image Velocimetry using Advanced FilteringEckstein, Adric 18 January 2008 (has links)
Digital Particle Image Velocimetry (DPIV) is a planar measurement technique to measure the velocity within a fluid by correlating the motion of flow tracers over a sequence of images recorded with a camera-laser system. Sophisticated digital processing algorithms are required to provide a high enough accuracy for quantitative DPIV results. This study explores the potential of a variety of cross-correlation filters to improve the accuracy and robustness of the DPIV estimation. These techniques incorporate the use of the Phase Transform (PHAT) Generalized Cross Correlation (GCC) filter applied to the image cross-correlation. The use of spatial windowing is subsequently examined and shown to be ideally suited for the use of phase correlation estimators, due to their invariance to the loss of correlation effects.
The Robust Phase Correlation (RPC) estimator is introduced, with the coupled use of the phase correlation and spatial windowing. The RPC estimator additionally incorporates the use of a spectral filter designed from an analytical decomposition of the DPIV Signal-to-Noise Ratio (SNR). This estimator is validated in a variety of artificial image simulations, the JPIV standard image project, and experimental images, which indicate reductions in error on the order of 50% when correlating low SNR images. Two variations of the RPC estimator are also introduced, the Gaussian Transformed Phase Correlation (GTPC): designed to optimize the subpixel interpolation, and the Spectral Phase Correlation (SPC): estimates the image shift directly from the phase content of the correlation. While these estimators are designed for DPIV, the methodology described here provides a universal framework for digital signal correlation analysis, which could be extended to a variety of other systems. / Master of Science
|
Page generated in 0.0578 seconds