Spelling suggestions: "subject:"square (SOS)""
1 |
Projetos de controladores robustos chaveados para sistemas não lineares baseados na decomposição em soma de quadrados /Ramos, Igor Thiago Minari. January 2018 (has links)
Orientador: Marcelo Carvalho Minhoto Teixeira / Resumo: Neste trabalho são propostos novos métodos de controle chaveado para uma classe de sistemas não lineares incertos utilizando a decomposição em soma de quadrados. Inicialmente é apresentada uma revisão dos conceitos e projetos de controladores baseados em desigualdades matriciais lineares (do inglês Linear Matrix Inequalities - LMIs) e a decomposição em soma de quadrados (do inglês Sum of Squares - SOS), buscando evidenciar as diferenças e vantagens das metodologias para a área de controle. Comumente são utilizados modelos fuzzy para realizar a análise da estabilidade e projeto de controladores para sistemas não lineares, e estes modelos podem ser classificados de acordo com a parte consequente linear ou polinomial. Busca-se neste trabalho evidenciar as diferenças entre os dois modelos fuzzy e a metodologia para projeto de controladores. Para o caso de sistemas cujas dinâmicas podem ser descritas apenas por funções polinomiais, serão consideradas incertezas politópicas. Então, visando flexibilizar o projeto utilizando um controlador composto por um único ganho polinomial e aumentar a região de factibilidade, são propostos controladores com ganhos polinomiais chaveados. O objetivo desta lei de chaveamento é minimizar a derivada da função de Lyapunov empregada no projeto. Considerando uma classe de sistemas não lineares mais geral, são propostos controladores com ganhos chaveados para modelos fuzzy polinomiais. A metodologia proposta não necessita do conhecimento das funções de ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this manuscript new control methods are proposed for a class of uncertain nonlinear systems using a sum of squares decomposition. Initially is presented a revision of concepts and control design procedures based on Linear Matrix Inequalities (LMIs) and on sum of squares (SOS) evidencing the differences and advantages of these methodologies in the control system design. Fuzzy models are commonly used to perform stability analysis and controller design for nonlinear systems, and can be classified by a linear or polynomial consequent model. A goal of this dissertation is to compare these two methodologies in the control system design of a class of uncertain nonlinear systems. For the case of systems whose dynamics can be described only by polynomial functions will be also considered polytopic uncertainty. Therefore, in order to make the design more flexible than that obtained with only one controller with polynomial gain and increase the feasibility region, a new procedure for designing controllers with switched polynomial gains is proposed. The purpose of this switching law is to minimize the time derivative of the Lyapunov function employed in the design. For a more general class of nonlinear systems, controllers with switched gains for polynomial fuzzy models are proposed. The proposed methodology does not require the knowledge of the membership functions for an implementation of the control law. This fact is an important advantage over the many methods that consider avail... (Complete abstract click electronic access below) / Mestre
|
2 |
Exploration d'alternatives aux LMI non-quadratiques pour l'analyse des systèmes non linéaires représentés par des modèles Takagi-Sugeno / Exploring some alternatives to non-quadratic LMI conditions for analyzing nonlinear systems based on Takagi-Sugeno modellingDuong, Chinh Cuong 28 June 2013 (has links)
Les travaux de cette thèse portent sur la stabilité et la stabilisation des systèmes non-linaires représentés par des modèles Takagi–Sugeno (T-S). L'objectif de ces travaux est d'explorer des techniques alternatives aux LMI pour l'analyse et la synthèse de lois de commande dans le cadre non quadratique afin de réduire le conservatisme. Tout d'abord, la stabilisation robuste de systèmes T-S à commutations incertains et perturbés a été considérée. Ainsi, des conditions de stabilisation ont été obtenues sous forme LMI sur la base d'une fonction candidate de Lyapunov à commutations. Puis, une nouvelle approche, pour l'analyse de la stabilité des systèmes non linéaires décrits par des modèles T-S polynomiaux a été proposée. L'objectif est ici d'explorer des techniques alternatives aux LMI dans le cadre non-quadratique. Ainsi, sur la base de travaux préliminaires dévolus à l'analyse de la stabilité via les techniques d'optimisation polynomiale « Sum-Of-Squares » (SOS), l'emploi d'une fonction candidate de Lyapunov polynomiale multiple a été proposée. Celle-ci permet de réduire le conservatisme des approches polynomiales existantes dans la littérature. Enfin, les modèles T-S classiques pouvant-être vus comme un cas particulier des modèles polynomiaux, une méthodologie de synthèse de lois de commande dans le cadre non quadratique est proposée. Celle-ci permet de s'affranchir de paramètres difficiles à obtenir en pratique via les approches LMI ainsi que de fournir une solution globale lorsque celle-ci existe. Néanmoins, à ce jour, des hypothèses fortes de modélisation restent toutefois nécessaires et constituent l'inconvénient majeur des approches SOS. Inconvénient qu'il conviendra de traiter dans des travaux futurs et qui suggèrent donc quelques perspectives à ces travaux. / This thesis deals with the stability and stabilization of nonlinear systems represented by Takagi-Sugeno (T-S) models. The objective of this work is to explore and find out some alternatives to classical LMI conditions in order to reduce the conservatism. First, we focus on robust stabilisation of uncertain switched T-S models. Based on a switched Lyapunov function, the stabilisation conditions are obtained in terms of LMI. Then, a new approach for the stability analysis of polynomial T-S models is proposed. The goal is here to explore alternatives to LMI in the non-quadratic framework. Therefore, an extension of some preliminary result on the stability analysis of polynomial T-S models is proposed by the use of a multiple polynomial Lyapunov function which lead to less conservatism. The stability conditions are given in terms of Sum-of-Squares (SOS) polynomial optimization problem. Finally, classical T-S models being a particular case of polynomial ones, an attempt is done as an alternative to LMI in the non quadratic framework for the design of non-PDC controllers via SOS techniques. Within this framework, global stability may be guaranteed if there exists a solution to the SOS constraints. Moreover, it didn't require unknown parameters in advance like in LMI based non quadratic approaches. However, these SOS based controller design conditions are obtained through a restrictive modelling assumption, suggesting future prospects to this work.
|
3 |
Contribution à la commande de systèmes non linéaires sous échantillonnage apériodique / Contribution to the control of nonlinear systems under aperiodic samplingOmran, Hassan 24 March 2014 (has links)
Cette thèse est dédiée à l’analyse de stabilité des systèmes non linéaires sous échantillonnage variant avec le temps. Lors de l’implémentation numérique d’un contrôleur qui est calculé en temps-continu (approche par émulation), il est d'un grand intérêt de fournir des critères de stabilité et d’estimer la borne supérieure de l’intervalle d’échantillonnage qui garantit la stabilité du système en temps discret. Plusieurs travaux récents ont abordé ces questions dans le cas de modèles linéaires, mais la question a rarement été abordée dans une étude quantitative et formelle pour les systèmes non linéaires.Tout d'abord, le mémoire présente un aperçu sur les systèmes échantillonnés. Les défis et les principales méthodes pour l'analyse de stabilité sont présentés pour le cas des systèmes linéaires invariants dans le temps et celui des systèmes non linéaires. Ensuite, l’analyse de la stabilité locale des systèmes bilinéaires échantillonnés contrôlés par un retour d'état linéaire est considérée. Deux approches sont utilisées, la première basée sur la théorie des systèmes hybrides, la seconde basée sur l’analyse des ensembles invariants contractants. Cette dernière approche est inspirée par la théorie de la dissipativité. L’ensemble de ces résultats conduisent à des conditions suffisantes de stabilité exprimées sous forme LMI.Enfin, les conditions de stabilité basées sur la dissipativité sont étendues au cas des systèmes non linéaires affines en l'entrée. Les résultats sont ensuite repris dans le cas spécifique des systèmes non linéaires polynomiaux où les conditions de stabilité sont vérifiées numériquement en utilisant la décomposition en somme des carrés (SOS). / This PhD thesis is dedicated to the stability analyzis of nonlinear systems under sampled-data control, with arbitrarily time-varying sampling intervals. When a controller is designed in continuous-time, and then implemented digitally (emulation approach), it is of great interest to provide stability criteria, and to estimate the bound on the sampling intervals which guarantees the stability of the sampled-data system. Whereas several works deal with linear models, the issue has been rarely addressed in a formal quantitative study in the nonlinear case.First, an overview on sampled-data control is presented. Challenges and main methodologies for stability analysis are presented for both the linear time-invariant and the nonlinear cases.Then, local stability of bilinear sampled-data systems controlled by a linear state feedback is considered by using two approaches: the first one is based on hybrid systems theory; the second one is based on the analyzis of contractive invariant sets and is inspired by the dissipativity theory. Both approaches provide sufficient stability conditions in the form of LMI.Finally, the dissipativity–based stability conditions are extended for the more general case of nonlinear systems which are affine in the input, including the case of polynomial systems which leads to conditions in the form of sum of squares (SOS).
|
Page generated in 0.056 seconds