• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing the reproducibility of coral-based climate records [electronic resource] : a multi-proxy replication test using three Porites lutea coral heads from New Caledonia / by Christie L. Stephans.

Stephans, Christie L. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 93 pages / Thesis (M.S.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Coral-based climate studies commonly use elemental ratios and stable isotopes of coral skeletons to address seawater temperature and hydrologic balance issues in the tropical surface oceans. Replication, or cross-checking, a standard technique used to assess the fidelity of proxy records in paleoclimatology has not been widely applied in coral-based climate studies, primarily because of the time and cost associated with generating multiple records from a single reef site. Modern and paleoclimate reconstructions based on a single proxy-coral record from a site may contain errors if individual corals from the same reef record different geochemical signals. In this study we perform a replication test using elemental ratios and stable isotopes in three Porites corals from New Caledonia. / ABSTRACT: The reef complex offshore Amédée Island, New Caledonia is an ideal site to perform a coral replication test because instrumental sea surface temperatures (SST) and sea surface salinity measurements (SSS) have been made there for over 25 years. In this study, we compare sub-monthly resolved, geochemical variations (Sr/Ca, d18O and d13C) in three Porites lutea coral heads, located 500 m apart, with the instrumental SST and SSS records over the interval 1992-1967. The monthly coral Sr/Ca and d18O time series are well correlated to each other (r=0.86, p[.0001) and to the monthly instrumental SST record (r= -0.86, p[.0001, coral Sr/Ca to SST; r= -0.77, p[.0001, coral d18O to SST). The three, sub-monthly resolved, 30-year coral Sr/Ca-SST time series have mean SST values that agree within 0.2oC with the instrumental mean SST value. A similar comparison for the coral d18O-SST records indicate a maximum difference between predicted and observed mean SST of 0.5°C. / ABSTRACT: Analysis of the monthly climatological means also indicates that Sr/Ca-SST records closely match the instrumental SST record ±0.4°C; a similar comparison using the d18O-SST record yields an average offset of ±0.6°C between observed and predicted monthly SST. Stacking the three records to form composite Sr/Ca-SST and d18O-SST records does not appreciably improve the goodness of fit between the proxy and instrumental SST records; hence a coral-based proxy climate record from a single coral accurately reflects the observed record of climate variability at this locality. These results support the concept that high fidelity climate records can be generated using a single coral core. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
2

Assessing the reproducibility of skeletal geochemistry records in Atlantic corals using Montastraea annularis coral heads from the Dry Tortugas, Florida

Stair, Kristine L 01 June 2007 (has links)
Core samples were collected in September 1995 from live coral heads of Montastraea annularis at Bird Key reef in the Dry Tortugas, Florida (24 degrees 55 minutes N, 82 degrees 92 minutes W). Four 4 mm-thick coral slabs from two cores were continuously sampled at 12 samples per year (0.025 cm per sample for Core 31, 0.023 cm per sample for Core 35). Visual inspection of X-radiographs indicates an average skeletal extension rate of about 3 mm per year in Bird Key corals. The goal of this study was to perform a replication test in Montastraea annularis by using elemental and stable isotopes from four coral slabs from two different coral heads to address the following questions: 1) how well do geochemical signals replicate within a single coral head, 2) how well do geochemical signals replicate from two different cores from the same coral head, 3) how well do geochemical signals replicate from two coral heads from the same general area, and 4) do growth effects influence the geochemistry of slow-growing corals at the Dry Tortugas? Geochemical variations versus depth and time of all coral records show strong seasonal cyclicity. Variations in d18O in the suite of Bird Key coral records replicate the best; d13C and Sr/Ca variations replicate less well. For example, differences in the mean Sr/Ca record from two different coral heads are large (0.179 mmol/mol for BK31B-BK35CC; 0.196 mmol/mol for BK31C-BK35CC; ~4 degrees C) and nearly 4 times greater than analytical precision. Therefore, caution must be exercised in interpreting Sr/Ca-SST records in Montastraea annularis. Mean differences in coral d18O for all records, on the other hand, are within analytical precision and translate to temperature differences of less than 0.5 degrees C. Robust d18O values among cores that co-vary with a significant level of agreement further point to this proxy being more reliable than Sr/Ca. Because of its skeletal complexity, drilling difficulty, and large bio-geological error for Sr/Ca, Montastraea annularis seems poorly suited for coral-based Sr/Ca-SST studies. However, the species must be studied to understand tropical Atlantic interannual-decadal scale variability, so further assessment is warranted.
3

Assessing the Reproducibility of Coral-based Climate Records: A Multi-proxy Replication Test using Three <em>Porites lutea</em> Coral Heads from New Caledonia

Stephans, Christie L 05 November 2003 (has links)
Coral-based climate studies commonly use elemental ratios and stable isotopes of coral skeletons to address seawater temperature and hydrologic balance issues in the tropical surface oceans. Replication, or cross-checking, a standard technique used to assess the fidelity of proxy records in paleoclimatology has not been widely applied in coral-based climate studies, primarily because of the time and cost associated with generating multiple records from a single reef site. Modern and paleoclimate reconstructions based on a single proxy-coral record from a site may contain errors if individual corals from the same reef record different geochemical signals. In this study we perform a replication test using elemental ratios and stable isotopes in three Porites corals from New Caledonia. The reef complex offshore Amédée Island, New Caledonia is an ideal site to perform a coral replication test because instrumental sea surface temperatures (SST) and sea surface salinity measurements (SSS) have been made there for over 25 years. In this study, we compare sub-monthly resolved, geochemical variations (Sr/Ca, δ18O and δ13C) in three Porites lutea coral heads, located ~500 m apart, with the instrumental SST and SSS records over the interval 1992-1967. The monthly coral Sr/Ca and δ18O time series are well correlated to each other (r=0.86, p<.0001) and to the monthly instrumental SST record (r= -0.86, p<.0001, coral Sr/Ca to SST; r= -0.77, p<.0001, coral δ18O to SST). The three, sub-monthly resolved, 30-year coral Sr/Ca-SST time series have mean SST values that agree within 0.2o C with the instrumental mean SST value. A similar comparison for the coral δ18O-SST records indicate a maximum difference between predicted and observed mean SST of 0.5˚C. Analysis of the monthly climatological means also indicates that Sr/Ca-SST records closely match the instrumental SST record ±0.4˚C; a similar comparison using the δ18O-SST record yields an average offset of ±0.6˚C between observed and predicted monthly SST. Stacking the three records to form composite Sr/Ca-SST and δ18O-SST records does not appreciably improve the goodness of fit between the proxy and instrumental SST records; hence a coral-based proxy climate record from a single coral accurately reflects the observed record of climate variability at this locality. These results support the concept that high fidelity climate records can be generated using a single coral core.

Page generated in 0.1088 seconds