• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of precipitation δ18O isoscapes for Canada and application within a tracer-aided hydrological model

Delavau, Carly J. January 2011 (has links)
Delineating spatial patterns of precipitation isotopes (“isoscapes”) is important for studies including the hydrology of terrestrial systems, present and past interpretations of climate, and tracer-aided hydrological modelling, among others. However, the extent to which precipitation isoscapes can be predicted across Canada has not been fully articulated. This thesis combines isotopes in precipitation (δ18Oppt) observations from two regional and one global network to create long term and time series precipitation isoscapes for Canada and the northern United States. Multi-linear regressions of a small suite of geographic and climate variables generate the best performing long-term and seasonal models of δ18Oppt. These models are used to develop long term isoscapes for Canada, which capture the general spatial and seasonal trends in δ18Oppt, showing an improvement upon results from previous studies using global models. Building upon long-term δ18Oppt prediction, δ18Oppt observations alongside climatological and geographic predictors are used to create empirical time series prediction models. Five regionalization approaches are used to separate the study domain into isotope zones to explore the effect of spatial grouping on simulations. Generally, the models capture the timing and magnitude of intra-annual (seasonal) δ18Oppt cycles across the study domain while simulating moderate inter-annual variation; however often fail to capture the anomalies in observed δ18Oppt. Uncertainty in predictions is quantified spatially and temporally, and the Köppen-Geiger (Kpn) regionalization is selected as the preferred regionalization scheme for future applications due to adequate model performance and lack of border issues at regional boundaries. Finally, estimates of monthly δ18Oppt from Kpn models, long term annual averages, and daily REMOiso output are used to force an isotope-enabled hydrological model, isoWATFLOOD, in the Fort Simpson Basin, NWT, Canada. Results show streamflow simulations are not significantly impacted by choice of δ18Oppt input; however, oxygen-18 in streamflow and the internal apportionment of water (and model parameterizations) are impacted, particularly during large precipitation and snowmelt events. This work shows how isoWATFLOOD can be used in regions with limited δ18Oppt observations, and that the model can be of value in such regions. This study reinforces that a tracer-aided modelling approach works towards diagnosing issues surrounding model equifinality. / February 2017
2

Experimental Study of the Growth and Stable Water Isotopes of Ice Formed by Vapour Deposition in Cold Environments

Brasseur, Philippe January 2016 (has links)
Ice formed by water vapour deposition has been identified in different terrestrial environments: 1) in the atmosphere; 2) at the ground’s surface; 3) in caves; 4) in seasonally frozen ground; and 5) in perennially frozen ground (permafrost). Thus far, ground ice formed by diffusion and deposition of vapour in soils (types 4 and 5) has rarely been studied in a natural setting and remains one of the most poorly described ice types on Earth. This thesis focuses on the dynamics of deposition and sublimation of atmospheric water vapour into permafrost and the isotopic signature (D/H and 18O/16O) of the emplaced ground ice under different experimental conditions. Ground ice was produced in sediments with different thermo-physical characteristics (glass beads, JSC Mars-1 simulant). After a two-month growth period, the higher porosity sediments (JSC) had more than 7x the gravimetric water content than the lower porosity soil. Ground ice profiles had a distinct concave downwards shape due to the decrease in saturation vapour pressure with depth. Results also indicate that vapour deposited ground ice has a distinct δD-δ18O composition that plots near regression slope value of 8. Pore water isotopes plot below the global meteoric water line (GMWL) when the source of moisture is directly on top of the sediments. If an air gap is introduced between the source of moisture and the sediments, the pore water isotopes shift above the GMWL due to re-sublimation at the ground surface. Overall, this thesis addressed some fundamental knowledge gaps required to better understand the growth and isotopic evolution of ground ice emplaced by vapour deposition.
3

Assessing the value of stable water isotopes in hydrologic modeling: a dual-isotope approach

Holmes, Tegan 13 September 2016 (has links)
This thesis presents the development of a dual-isotope simulation in a hydrological model, and its application to the lower Nelson River basin. The purpose of this study is to find if the simulation of stable water isotopes aids in hydrological simulation, and if a dual-isotope simulation is an improvement over a single-isotope simulation. The isoWATFLOOD model was enhanced to include δ2H and improve physical representativeness. The model was calibrated using various isotope and flow simulation error functions. Internal hydrologic storages and fluxes were verified by comparing simulated isotope values to observed isotope data. Adding isotope error to the calibration resulted in small but consistent improvements to the physical basis of calibrated parameter values. Isotope simulation error was found to be the best predictor of streamflow simulation performance beyond the calibration period. The dual-isotope simulation identified a number of model limitations and potential improvements from the verification of internal hydrologic storages. / October 2016
4

Stable water isotopes in precipitation over western Cuba / Isótopos estáveis das precipitações sobre Cuba ocidental

Yeleine Almoza Hernández 12 January 2018 (has links)
The use of stable water isotopes as 18O and 2H are widely used in the last 50 years as tracer in climatic and hydrological studies. Stable water isotopes have slightly different physical properties and require different latent energy for phase changes, so the concentration of water isotopes varies during water phase changes, which is known as fractionation. Specifically in the tropics, the stable water isotopes have a very particular behavior unlike other regions, by the influence of large rainfalls amount, temperature and relative humidity. Cuba is an inland in the middle of the Caribe Sea, where studies about isotopic characterization of precipitations have never been made. In order to understand and explain some issues related to the isotopic behavior of precipitation in this inland, the research work was developed making use of data from that area. The general objective of this research proposal is to characterize the isotopic composition of rainfall in west of Cuba, including the demonstration of the vegetation influence in rainfall isotopic composition, and to determine mathematical models that describe the relationship between rainfall amount, intensity and isotopic composition for future paleoclimatic studies there. Data from the Global Network of Isotopes in Precipitation (GNIP) of the International Atomic Energy Agency (IAEA) were used. Thus, the thesis was developed in three chapters of contents. The first topic addressed was in relation to demonstrate the isotopic fractionation resulting from transpiration by a green canopy. As results, it was shown that transpiration is a fractional process with respect to water isotopes. The magnitude of this fractionation is determined by environmental factors, such as soil water content, rainfall amount, temperature, and the relative humidity. The environmental factors influence the behavior of such important variables as stomatal aperture, the different diffusion resistances, and the kinetic fractionation. Then were proposed eight mathematical models that describes the relationship between rainfall isotopic composition, amount and erosivity for paleoclimatic studies. The trend founded in this research is that months with highest rainfall erosivity were less heavy isotopically. ?2H and ?18O were negatively correlated with erosivity and with the rainfall amount. The rainfall amounts were the higher negative correlation with the isotopic composition for this tropical region. In the third chapter, finally, it was evaluated if even Cuba being an island could be seen the classic effects of the isotopic hydrology as, continentality, rainfall amount and seasonality. As results, rainfalls in western Cuba are in general isotopically enriched in ?18O and ?2H in comparison with other regions at higher latitudes. The annual mean values for ?18O vary between (1 to -8) ? and for ?2H between (15 to -40) ?. Nevertheless, there is marked seasonal behavior, being the rainfalls heavier in winter and more depleted in summer, showing the established patterns for tropical region. The influence of the air masses movement on the rainfall isotopic behavior could be affirming the presence of the continental effect / Isótopos estáveis da água como 18O e 2H foram amplamente utilizados nos últimos 50 anos como traçadores em estudos climáticos e hidrológicos. Os isótopos estáveis da água têm propriedades físicas ligeiramente diferentes, incluindo uma energia latente diferente para as mudanças de fase, de modo que a concentração de isótopos da água se altera em mudanças da fase aquosa, fenômeno conhecido como fracionamento isotópico. Especificamente nos trópicos, os isótopos estáveis da água têm um comportamento muito particular, contrário ao nas regiões temperadas, pela influência dos grandes acumulados da chuva, altas temperaturas e umidade relativa. Cuba é uma ilha no meio do mar Caribe, onde estudos sobre a caracterização isotópica das precipitações nunca foram feitos. Para entender e explicar algumas questões relacionadas ao comportamento isotópico da precipitação nesta ilha, o trabalho de pesquisa foi desenvolvido fazendo uso de dados da área. O objetivo geral desta proposta de pesquisa é caracterizar a composição isotópica das chuvas no oeste de Cuba, incluindo a demonstração da influência da vegetação na composição isotópica da precipitação e determinar modelos matemáticos que descrevem a relação entre a quantidade e intensidade da chuva com a composição isotópica para futuros estudos paleoclimáticos. Para isto foram utilizados dados da Rede Global de Isótopos em Precipitação (GNIP) da Agência Internacional de Energia Atômica (AIEA). Assim, essa tese se apresenta em três capítulos. O primeiro capítulo trata da demonstração do fracionamento isotópico resultante da transpiração através da folha de árvores. A magnitude desse fracionamento é determinada por fatores ambientais, como o teor da água no solo, a quantidade da precipitação, a temperatura e a umidade relativa do ar. Os fatores ambientais influenciam o comportamento de variáveis tão importantes como a abertura estomática, as diferentes resistências de difusão e o fracionamento cinético. No segundo capítulo propõem-se oito modelos matemáticos que descrevem a relação entre a composição isotópica da precipitação, sua quantidade e erosividade, úteis para estudos paleoclimáticos. A tendência encontrada nesta pesquisa é que meses com chuvas mais erosivas foram menos pesadas isotopicamente. Os valores de ?2H e ?18O foram negativamente correlacionados com a erosividade e com os acumulados de precipitação, sendo que os acumulados de precipitação foram os de maior correlação negativa com a composição isotópica nesta região tropical. No terceiro capítulo foi avaliado se em Cuba, uma ilha, podiam ser detectados os efeitos clássicos da hidrologia isotópica. Os valores médios anuais para ?18O variam entre 1 e -8? e para ?2H entre 15 e -40?. No entanto, há um comportamento sazonal marcado, sendo as chuvas isotopicamente mais pesadas no inverno e mais leves no verão, mostrando os padrões estabelecidos para a região tropical. A influência do movimento das massas do ar sobre o comportamento isotópico da chuva pode afirmar a presença do efeito de continentalidade
5

Stable water isotopes in precipitation over western Cuba / Isótopos estáveis das precipitações sobre Cuba ocidental

Hernández, Yeleine Almoza 12 January 2018 (has links)
The use of stable water isotopes as 18O and 2H are widely used in the last 50 years as tracer in climatic and hydrological studies. Stable water isotopes have slightly different physical properties and require different latent energy for phase changes, so the concentration of water isotopes varies during water phase changes, which is known as fractionation. Specifically in the tropics, the stable water isotopes have a very particular behavior unlike other regions, by the influence of large rainfalls amount, temperature and relative humidity. Cuba is an inland in the middle of the Caribe Sea, where studies about isotopic characterization of precipitations have never been made. In order to understand and explain some issues related to the isotopic behavior of precipitation in this inland, the research work was developed making use of data from that area. The general objective of this research proposal is to characterize the isotopic composition of rainfall in west of Cuba, including the demonstration of the vegetation influence in rainfall isotopic composition, and to determine mathematical models that describe the relationship between rainfall amount, intensity and isotopic composition for future paleoclimatic studies there. Data from the Global Network of Isotopes in Precipitation (GNIP) of the International Atomic Energy Agency (IAEA) were used. Thus, the thesis was developed in three chapters of contents. The first topic addressed was in relation to demonstrate the isotopic fractionation resulting from transpiration by a green canopy. As results, it was shown that transpiration is a fractional process with respect to water isotopes. The magnitude of this fractionation is determined by environmental factors, such as soil water content, rainfall amount, temperature, and the relative humidity. The environmental factors influence the behavior of such important variables as stomatal aperture, the different diffusion resistances, and the kinetic fractionation. Then were proposed eight mathematical models that describes the relationship between rainfall isotopic composition, amount and erosivity for paleoclimatic studies. The trend founded in this research is that months with highest rainfall erosivity were less heavy isotopically. ?2H and ?18O were negatively correlated with erosivity and with the rainfall amount. The rainfall amounts were the higher negative correlation with the isotopic composition for this tropical region. In the third chapter, finally, it was evaluated if even Cuba being an island could be seen the classic effects of the isotopic hydrology as, continentality, rainfall amount and seasonality. As results, rainfalls in western Cuba are in general isotopically enriched in ?18O and ?2H in comparison with other regions at higher latitudes. The annual mean values for ?18O vary between (1 to -8) ? and for ?2H between (15 to -40) ?. Nevertheless, there is marked seasonal behavior, being the rainfalls heavier in winter and more depleted in summer, showing the established patterns for tropical region. The influence of the air masses movement on the rainfall isotopic behavior could be affirming the presence of the continental effect / Isótopos estáveis da água como 18O e 2H foram amplamente utilizados nos últimos 50 anos como traçadores em estudos climáticos e hidrológicos. Os isótopos estáveis da água têm propriedades físicas ligeiramente diferentes, incluindo uma energia latente diferente para as mudanças de fase, de modo que a concentração de isótopos da água se altera em mudanças da fase aquosa, fenômeno conhecido como fracionamento isotópico. Especificamente nos trópicos, os isótopos estáveis da água têm um comportamento muito particular, contrário ao nas regiões temperadas, pela influência dos grandes acumulados da chuva, altas temperaturas e umidade relativa. Cuba é uma ilha no meio do mar Caribe, onde estudos sobre a caracterização isotópica das precipitações nunca foram feitos. Para entender e explicar algumas questões relacionadas ao comportamento isotópico da precipitação nesta ilha, o trabalho de pesquisa foi desenvolvido fazendo uso de dados da área. O objetivo geral desta proposta de pesquisa é caracterizar a composição isotópica das chuvas no oeste de Cuba, incluindo a demonstração da influência da vegetação na composição isotópica da precipitação e determinar modelos matemáticos que descrevem a relação entre a quantidade e intensidade da chuva com a composição isotópica para futuros estudos paleoclimáticos. Para isto foram utilizados dados da Rede Global de Isótopos em Precipitação (GNIP) da Agência Internacional de Energia Atômica (AIEA). Assim, essa tese se apresenta em três capítulos. O primeiro capítulo trata da demonstração do fracionamento isotópico resultante da transpiração através da folha de árvores. A magnitude desse fracionamento é determinada por fatores ambientais, como o teor da água no solo, a quantidade da precipitação, a temperatura e a umidade relativa do ar. Os fatores ambientais influenciam o comportamento de variáveis tão importantes como a abertura estomática, as diferentes resistências de difusão e o fracionamento cinético. No segundo capítulo propõem-se oito modelos matemáticos que descrevem a relação entre a composição isotópica da precipitação, sua quantidade e erosividade, úteis para estudos paleoclimáticos. A tendência encontrada nesta pesquisa é que meses com chuvas mais erosivas foram menos pesadas isotopicamente. Os valores de ?2H e ?18O foram negativamente correlacionados com a erosividade e com os acumulados de precipitação, sendo que os acumulados de precipitação foram os de maior correlação negativa com a composição isotópica nesta região tropical. No terceiro capítulo foi avaliado se em Cuba, uma ilha, podiam ser detectados os efeitos clássicos da hidrologia isotópica. Os valores médios anuais para ?18O variam entre 1 e -8? e para ?2H entre 15 e -40?. No entanto, há um comportamento sazonal marcado, sendo as chuvas isotopicamente mais pesadas no inverno e mais leves no verão, mostrando os padrões estabelecidos para a região tropical. A influência do movimento das massas do ar sobre o comportamento isotópico da chuva pode afirmar a presença do efeito de continentalidade
6

Large-scale and Microphysical Controls on Water Isotopes in the Atmosphere

Field, Robert 16 March 2011 (has links)
The isotopic composition of water in the atmosphere is influenced by how the water evaporated, how it was transported, and how it formed in the cloud before falling. Because these processes are temperature dependent, the isotopic ratios stored in glacial ice and other proxy sources have been used as an indicator of pre-instrumental climate. There is uncertainty, however, as to whether isotopic ratios should be interpreted as a proxy of local temperature, or as a broader indicator of changes in how the vapor was transported. To better understand these processes, the NASA GISS general circulation model (GCM) was used to examine two different types of controls on the isotopic composition of moisture. The first control was the large-scale circulation of the atmosphere. Over Europe, it was found that δ18O is strongly controlled by a Northern Annular Mode-like pattern, detected in both the GCM and for Europe’s high-quality precipitation δ18O data. Over the southwest Yukon, it was found that higher δ18O was associated with moisture transport from the south, which led to a re-interpretation of the large mid-19th century δ18O shift seen in the ice cores from Mt. Logan. The second type of control was microphysical, relating to the way precipitation interacts with vapor after it has formed. Using a GCM sensitivity experiment, the effects of ‘post-condensation exchange’ were found to depend primarily on the proportion between the amount of upstream precipitation that fell as rain and the amount that fell as snow, and at low latitudes, on the strength of atmospheric moisture recycling. This led to a partitioning of the well-observed correlation between temperature and precipitation δ18O into its initial and post-condensation components, and a GCM-based interpretation of satellite measurements of the isotopic composition of water vapor in the troposphere.
7

Large-scale and Microphysical Controls on Water Isotopes in the Atmosphere

Field, Robert 16 March 2011 (has links)
The isotopic composition of water in the atmosphere is influenced by how the water evaporated, how it was transported, and how it formed in the cloud before falling. Because these processes are temperature dependent, the isotopic ratios stored in glacial ice and other proxy sources have been used as an indicator of pre-instrumental climate. There is uncertainty, however, as to whether isotopic ratios should be interpreted as a proxy of local temperature, or as a broader indicator of changes in how the vapor was transported. To better understand these processes, the NASA GISS general circulation model (GCM) was used to examine two different types of controls on the isotopic composition of moisture. The first control was the large-scale circulation of the atmosphere. Over Europe, it was found that δ18O is strongly controlled by a Northern Annular Mode-like pattern, detected in both the GCM and for Europe’s high-quality precipitation δ18O data. Over the southwest Yukon, it was found that higher δ18O was associated with moisture transport from the south, which led to a re-interpretation of the large mid-19th century δ18O shift seen in the ice cores from Mt. Logan. The second type of control was microphysical, relating to the way precipitation interacts with vapor after it has formed. Using a GCM sensitivity experiment, the effects of ‘post-condensation exchange’ were found to depend primarily on the proportion between the amount of upstream precipitation that fell as rain and the amount that fell as snow, and at low latitudes, on the strength of atmospheric moisture recycling. This led to a partitioning of the well-observed correlation between temperature and precipitation δ18O into its initial and post-condensation components, and a GCM-based interpretation of satellite measurements of the isotopic composition of water vapor in the troposphere.
8

Polygon ponds and their ostracode assemblages as bioindicators in the Indigirka Lowland (north-east Siberia)

Schneider, Andrea January 2013 (has links)
Freshwater ostracods (crustacea, ostracoda) are sensitive to environmental conditions, and are widely used as biological indicators for past and present environmental changes. The abundance and diversity of ostracods from permafrost areas is currently documented in scattered records with incomplete ecological characterizations. The objectives of the thesis were to determine the taxonomic and ecological range of ostracod assemblages and their habitat conditions in polygon ponds in different landscape units of the Indigirka Lowland (north-east Siberia, Russia). A monitoring approach focused seasonal meteorological and limnological variability of a selected pond site, its ostracod population dynamics, and the geochemical properties of ostracod valve calcite. Shallow, well-oxygenated, and dilute ponds with slightly acidic to circumneutral pH hosted an abundant and diverse ostracod fauna. A total of 4849 identified ostracods from eight species and three taxa represent the first record of the ostracod fauna in the Indigirka Lowland. Fabaeformiscandona krochini and Fabaeformiscandona groenlandica were documented for the first time in continental Siberia. Fabaeformiscandona sp. I and Fabaeformiscandona sp. II were newly found taxa holding a strong indicative potential for hydrochemical parameters. Repeated sampling of a typical low-center polygon pond revealed detailed insights in the population dynamics of Fabaeformiscandona pedata and its reproduction strategy. Substrate properties, physical and hydrochemical conditions in the studied ponds offered largely homogeneous habitats across different landscape units and pond types to ostracods. River flooding and differences in morphology between pond types resulted in variations in sediment, vegetation, hydrochemical and stable water isotope composition of the ponds. Ponds in the river floodplain and intrapolygon ponds hosted the most diverse ostracod fauna while species diversity was lowest in thaw lakes. Air temperature and precipitation were identified as the main external drivers of water temperatures, water levels, ion concentrations, and stable water isotope composition in small periglacial waters on diurnal and seasonal scales. Ostracod valve calcite recorded seasonal variations in stable oxygen isotopes of the ambient waters, but needs to be interpreted carefully with regard to species-specific background knowledge. / POLYGON - Polygons in tundra wetlands: state and dynamics under climate variability in polar regions
9

Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America

Neff, Kirstin Lynn January 2015 (has links)
Alluvial groundwater systems are an important source of water for communities and biodiverse riparian corridors throughout the arid and semi-arid Basin and Range Geological Province of western North America. These aquifers and their attendant desert streams have been depleted to support a growing population, while projected climate change could lead to more extreme episodes of drought and precipitation in the future. The only source of replenishment to these aquifers is recharge. This dissertation builds upon previous work to characterize and quantify recharge in arid and semi-arid basins by characterizing the intra-annual seasonality of recharge across the Basin and Range Province, and considering how climate change might impact recharge seasonality and volume, as well as fragile riparian corridors that depend on these hydrologic processes. First, the seasonality of recharge in a basin in the sparsely-studied southern extent of the Basin and Range Province is determined using stable water isotopes of seasonal precipitation and groundwater, and geochemical signatures of groundwater and surface water. In northwestern Mexico in the southern reaches of the Basin and Range, recharge is dominated by winter precipitation (69% ± 42%) and occurs primarily in the uplands. Second, isotopically-based estimates of seasonal recharge fractions in basins across the region are compared to identify patterns in recharge seasonality, and used to evaluate a simple water budget-based model for estimating recharge seasonality, the normalized seasonal wetness index (NSWI). Winter precipitation makes up the majority of annual recharge throughout the region, and North American Monsoon (NAM) precipitation has a disproportionately weak impact on recharge. The NSWI does well in estimating recharge seasonality for basins in the northern Basin and Range, but less so in basins that experience NAM precipitation. Third, the seasonal variation in riparian and non-riparian vegetation greenness, represented by the normalized difference vegetation index (NDVI), is characterized in several of the study basins and climatic and hydrologic controls are identified. Temperature was the most significant driver of vegetation greenness, but precipitation and recharge seasonality played a significant role in some basins at some elevations. Major contributions of this work include a better understanding of recharge in a monsoon-dominated basin, the characterization of recharge seasonality at a regional scale, evaluation of an estimation method for recharge seasonality, and an interpretation of the interaction of seasonal hydrologic processes, vegetation dynamics, and climate change.
10

Water cycling on cultivated land: an investigation of hydrological separation in the vadose zone

Smith, Devin Foster 29 August 2019 (has links)
No description available.

Page generated in 0.0862 seconds