• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 15
  • 10
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissecting and Targeting the PUMA and OLIG2 Control Points of Tumors of Neuroectodermal Origin with Stapled Peptides

Edwards, Amanda Lee 07 December 2013 (has links)
Tumors of neuroectodermal origin are among the most aggressive and treatment-refractory forms of human cancer. While such tumors arise from a variety of defects, two key targets are the transcription factors p53 and OLIG2. We have developed stabilized peptides to study and target deregulated p53 and OLIG2 pathways in neuroectodermal cancers. PUMA (p53-upregulated modulator of apoptosis) is a BH3-only member of the BCL-2 protein family that regulates apoptosis in response to p53-dependent and p53-independent stress signals. The specific interactions that mediate the pro-apoptotic activity of PUMA remain controversial. We generated stabilized alpha-helices of BCL-2 domains (SAHB) peptides modeled after the BH3 effector domain of PUMA. Structural analyses determined that PUMA SAHB contacts BAX at both the N-terminal \(\alpha1/\alpha6\) trigger site and the canonical BH3 binding pocket, binding events that functionally activate BAX. Notably, both PUMA SAHB and PUMA protein pull-downs identified anti- and pro-apoptotic binding partners in a cellular context. As PUMA has been implicated in driving apoptosis in multiple neural cell types, we further demonstrated that treatment of neuroblastoma cell lines with a cell-permeable PUMA SAHB analog triggered dose-dependent apoptosis. Together, we find that the PUMA BH3 domain activates apoptosis through multimodal interactions with BCL-2 family proteins, and its mimetics may serve as prototype therapeutics in tumors of neural origin. Whereas suppression of p53 signaling and apoptosis are features of diverse tumor types, the basic helix-loop-helix (bHLH) transcription factor OLIG2 is selectively overexpressed in gliomas. Early in development, OLIG2 is responsible for maintaining progenitor cells in a replication-competent state. Tumor stem cells are believed to co-opt this OLIG2 functionality to continually repopulate glial tumors. To achieve its transcriptional function, OLIG2 must dimerize via its bHLH domain. Stabilized alpha-helices of OLIG2 (SAH-OLIG2) peptides of the OLIG2 bHLH domain were generated in an effort to disrupt this pathologic dimerization. While helical stabilization of several SAH-OLIG2 peptides was achieved, specific engagement and disruption of the native bHLH dimer did not occur, informing alternative design strategies for future targeting efforts. These studies underscored the importance of interrogating the OLIG2 dimeric structure and catalyzed the discovery of candidate OLIG2 interaction partners for therapeutic targeting.
2

Macrocyclic Peptides: Chemistry and Biology of Stapled and Depsipeptides

Paquette, André 22 November 2023 (has links)
Macrocyclic peptides have been identified as key backbones in several biologically active compounds. They have been considered as great inspiration in the development of novel cyclic scaffolds in medicinal chemistry, notably in the introduction of α-helically constricted stapled peptides with the ability to mimic biologically relevant α-helices. DNA-binding transcription factors often bind their DNA promoter through an α-helix, making a parallel with stapled peptides as inhibitors. Despite this relevant feature, DNA-binding stapled peptides are highly unrepresented in the literature, as will be discussed here in a review. We also further expand this area of research with a study of DNA binding stapled peptide ana-logues with the goal of optimizing and investigating the DNA binding and antivirulence of an RpoN-based stapled peptide. Cyclic depsipeptides are highly biologically active natural product molecules however their synthesis can be challenging with the presence of a macrolactone. Due to this complexity, solid phase peptide synthesis strategies have been utilized to access peptide intermediates that can be synthetically macrocyclized using solution phase or on-resin approaches via macrolactam or macrolactone formation. A representative number of total syntheses in the literature is reviewed. Furthermore, we describe here the chemical total synthesis and chemoenzymatic synthesis of seongsanamide E cyclic depesipeptide via thioesterase medi-ated macrolactonization. Cyclic depsipeptides also play major roles in their producing organisms, notably siderophores capable of chelating and transporting iron. The biosynthesis of fungal siderophores is poorly explored, such as the iterative mechanism of oligomeric compound fusarinine C. We explore the synthesis of the previously never synthesized fusarinine C monomer to be utilized as a di-domain inhibitor of the adenylating-thiolation domains of the non-ribosomal peptide synthetase (NRPS) SidD.
3

Structural Stability of Nucleic Acids and Peptides: a Theoretical and Computational Study

Guo, Zuojun January 2012 (has links)
Thesis advisor: Udayan Mohanty / In chapter one, two simple models are used to estimate the electrostatic contributions to the stiffness of short DNA fragments. The first model views DNA as two strands that are appropriately parameterized and are wrapped helically around a straight cylinder radius equal to the radius of the DNA molecule. The potential energy of the DNA due to phosphate-phosphate electrostatic interactions is evaluated assuming that the charges interact through Debye-Hückle potentials. This potential energy is compared with the potential energy as computed using our second model in which DNA is viewed as two helical strands wrapping around a curved tube whose cross-section is a disk of radius equal to the radius of the DNA. The results are compared with counterion condensation models and experimental data (Guo et al. J. Phys. Chem. B, 2008, 112, 16163-16169). In chapter two, the fidelity of translation selection begins with the base pairing of codon-anticodon complex between the mRNA and tRNAs. Binding of cognate and near-cognate tRNAs induces 30S subunit of the ribosome to wrap around the ternary complex, EF-Tu(GTP)aa-tRNA. We have proposed that large thermal fluctuations play a crucial role in the selection process. The binding energies of over a dozen unique site-bound magnesium structural motifs are investigated and provide insights into the nature of interaction of divalent metal ions with the ribosome (Guo et al. Proc. Nat. Acad. Sci. 2011, 108, 3947-3951). In chapter three, we use extensive molecular dynamics simulations to study a series of stapled alpha helical peptides over a range of temperatures in solution. The peptides are found to exhibit substantial variations in predicted helicities that are in good agreement with the experimental value. In addition, we find significant variation in local structural flexibility of the peptides with the position of the linker, which appears to be more closely related to the observed differences in activity than the absolute alpha helical stability (Guo et al. Chem. Biol. Drug. Des. 2010, 75, 348-359.). In chapter four, the alpha helical conformation and structural stability of single and double stapled all-hydrocarbon cross-linked p53 peptides in solution and when bound to MDM2 is investigated. We determined the effects of the peptide sequence, the stereochemistry of the cross-linker, the conformation of the double bond in the alkene bridge, the length of the bridge, on the relative stability of the alpha helix structure. The conformation population distribution indicates a fully helical state and several partially folded states. The distribution of dihedral pairs of the stapled peptides in the bound state indicates a significant population around the alpha helical region. Sequences over which the linker spans tend to have the highest helical occupancy. Significant helical content is observed for a double stapled p53 peptide at 575 K. The probability to form native contacts is increased when the stapled peptides are bound to MDM2. The distribution of the end-to-end distance of the peptides is bimodal. / Thesis (PhD) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
4

Dissecting the Mechanisms of Direct Activation for Proapoptotic BAK and BAX

Leshchiner, Elizaveta S 08 October 2013 (has links)
Dissecting the Mechanisms of Direct Activation for Proapoptotic BAK and BAX / Chemistry and Chemical Biology
5

Direct Inhibition of the Conformational Activation of Pro-Apoptotic BAX by the BH4 Domain Helix of BCL-2

Barclay, Lauren Anne January 2014 (has links)
Programmed cell death by apoptosis is required for normal development and tissue homeostasis. Perturbations of the critical signaling pathways that regulate apoptosis drive a number of pathologic diseases; therefore, a deep understanding of the apoptotic regulatory networks and methods for therapeutically modulating them is highly warranted. As constituents of the intrinsic pathway of apoptosis, pro-apoptotic BCL-2 family proteins respond to internal signals of cell stress to activate cell death through permeabilization of the outer mitochondrial membrane to release cytochrome c and other apoptogenic factors. Anti-apoptotic BCL-2 proteins block apoptosis by forming stable heterodimers with pro-apoptotic BAX and BAK. Specifically, the C-terminal binding groove of BCL-2 sequesters the BCL-2 homology 3 (BH3) death domain of BAX to prevent BAX oligomerization. The N-terminal BH4 domain of BCL-2 is also believed to confer anti-apoptotic activity but the mechanism by which this occurs remains unknown. A direct, inhibitory interaction between the BCL-2 BH4 domain and BAX was established through application of a peptide stapling technology to preserve the α-helical character of the BH4 domain outside the context of full-length BCL-2. Photoaffinity labeling identified a new mode of BH4 domain interaction at the C-terminal face of BAX, revealing an additional layer of apoptotic regulation. Examination of the conformational activation of full-length BAX in a lipid membrane by hydrogen-deuterium exchange mass spectrometry revealed that the BCL-2 BH4 helix blocks the BAX conformational changes triggered by an activating BH3 peptide to preserve the inactive BAX fold. Thus, the mechanistic paradigm for BCL-2 inhibition of BAX has been expanded to allow future opportunities for modulation of apoptosis by mimicking or inhibiting the BH4 motif.
6

Investigation of Hydrocarbon Stapled Alpha-Helical Peptides as a Novel Method to Interrupt Protein-Target Interactions in Bacteria

Pau, Daniel January 2016 (has links)
With the increasing threat of multidrug resistant bacteria, there is a growing need to invent new drug classes that combat untreatable infections. Small molecule antibiotics have been successful in the past, but humanity is now losing the arms race against previously treatable pathogens. However, the number of clinically approved drugs targeting traditionally undruggable targets in bacteria remains low. New targets of complex protein-target interactions must be targeted for future pharmacological development. In an effort to create clinically viable biologics, the Verdine lab has developed a class of therapeutics called hydrocarbon stapled α-helical peptides; these peptides are known to affect protein-protein interactions by retaining secondary structure in vivo. Although this class of molecules has been extensively researched in cancer and viral therapies, there has been little work in bacteria due to the proposed endocytic method of entry. Moreover, DNA-binding stapled peptides have not been extensively investigated due the complexities in designing a peptide with gene selectivity. In an attempt to study peptides in bacteria, two stapled peptides based on the RpoN domain of σ54 and the FtsZ C-terminus have been synthesized. σ 54 is a DNA-binding co-factor of RNA polymerase (RNAP) and has been shown to regulate virulence and nitrogen and carbon metabolism. FtsZ is the structural unit of the contractile Z-ring that induces cell division. By designing stapled α-helical peptides to target these untraditional PPIs, we anticipate that these molecules may be used for future antimicrobial pharmacological development that treat multidrug resistant bacteria.
7

<b>STAPLED PEPTIDES AS DIRECT INHIBITORS OF ONCOGENIC TRANSCRIPTION FACTORS</b>

Ramya Modi (16705938) 31 July 2023 (has links)
<p>Basic leucine zipper (bZIP) transcription factors can have an oncogenic role in cancer development. Nuclear factor erythroid related 2-factor 2 (Nrf2) is a bZIP transcription factor that traditionally is thought of as a cellular protector. In normal cells, Nrf2 is only activated after exposure to reactive oxygen species or electrophiles and induces expression of antioxidant and detoxification genes. However, in many cancers (<i>e.g.,</i> lung, pancreatic, and breast) Nrf2 is constitutively activated and is associated with poor overall survival and intrinsic resistance to anticancer therapies. Nrf2 heterodimerizes with transcription factors small musculoaponeurotic fibrosarcoma Maf (sMAF) proteins (e.g., MafG) in the nucleus and binds DNA, inducing transcription of Nrf2 target genes, conferring chemotherapeutic resistance to cancer cells. c-Myc another bZIP transcription factor is often overexpressed in a variety of cancers and acts like a protooncogenic transcriptional regulator. Mutations that drive abnormal MYC expression are the most common cariogenic event in tumor progression. c-Myc heterodimerizes with Max, its obligate bHLH-LZ heterodimerization partner, to form an active transcriptional state and induces DNA transcription. Hence inhibiting the interaction between c-Myc-Max and Nrf2-MafG will not only prevent bZIP heterodimerization but also DNA binding and downstream functions of c-Myc and Nrf2 that promote carcinogenesis. Stapled peptides, with their ability to target large surface area interactions, have shown promise for specifically inhibiting protein-protein interactions. Stapled peptides have improved cell permeability and oral bioavailability when compared to biologics. We have designed and synthesized stapled peptide for Nrf2/MafG interaction inhibition and stapled peptides for c-Myc/Max heterodimerization inhibition. Nrf2/MafG inhibition using the synthesized stapled peptide N1S, was demonstrated by luciferase and fluorescence polarization assays. Overall, we hypothesize that stapled peptides will be an effective therapeutic strategy resulting in decreased chemotherapeutic resistance and cancer cell proliferation.</p>
8

Strain-promoted stapled peptides for inhibiting protein-protein interactions

Sharma, Krishna January 2019 (has links)
Protein-protein interactions (PPIs) are responsible for the regulation of a variety of important functions within living organisms. Compounds which can selectively modulate aberrant PPIs are novel therapeutic candidates for treating human diseases. Whilst PPIs have traditionally been considered as "undruggable", research in this area has led to the emergence of several effective methodologies for targeting PPIs. One such methodology is peptide stapling, which involves constraining a short peptide into its native alpha-helical form by forming a covalent link between two of its amino acid side-chains. The Sondheimer dialkyne reagent has previously been used in strain-promoted double-click cycloadditions with diazidopeptides to generate stapled peptides that are capable of inhibiting PPIs. However, the Sondheimer dialkyne suffers from poor water-solubility; it decomposes rapidly in aqueous solutions which limits its application in biological systems. This dissertation describes the design and synthesis of new substituted variants of the Sondheimer dialkyne with increased solubility and stability, that are suitable for application in strain promoted double click peptide stapling. In total, ten different derivatives were generated; of these, a meta-trimethylammonium substituted variant was found to have particularly high water-solubility and aqueous stability, as well as high azide reactivity. The substituted Sondheimer dialkynes were applied to the strain promoted double click stapling of p53-based diazido peptides in an effort to generate stapled peptide-based inhibitors of the oncogenic p53 MDM2 PPI, a validated target for anticancer therapeutics. Three stapled peptides were found to have inhibitory activity, thus demonstrating the utility of the novel dialkynes in the preparation of PPI inhibitors. The functionalised stapled peptide formed from a meta-fluoro substituted Sondheimer dialkyne was found to be the most potent inhibitor. All ortho-substituted Sondheimer dialkynes were found to be unreactive, whereas those with a meta-trimethylammonium substituent were highly reactive when compared to other meta-substituted dialkynes. These patterns in azide reactivity could be explained through X-ray crystallographic studies and density functional theory calculations.
9

New approaches to stapled peptides targeting the p53-MDM2 interaction

Saunders, Alexander William January 2016 (has links)
Recent approaches to constraining peptide sequences into more structurally-defined α- helical secondary structures, so-called peptide stapling, are discussed. Stapled peptides are a class of therapeutics that have been shown to more effectively target protein-protein interactions, which are harder to target using a classical small-molecule therapeutic approach. Stapling a peptide constrains it into a well-defined secondary structure. This more accurately mimics the protein-protein interaction making the peptide a more viable therapeutic. Starting from the p53-MDM2 interaction, a protein-protein interaction with important implications in cell health, a known peptidyl inhibitor of this interaction was stapled and analysed for increased α-helicity. This was achieved by using monomers that utilise the copper (I) alkyne azide cycloaddition as a cross-linking methodology, which has been less well researched in the context of peptide stapling. The viability of a novel stapled peptomer inhibitor approach, accomplished using a new, optimised monomer synthesis, is investigated. Additionally, the synthesis of a ligand series designed for use in the copper(I) alkyne azide cycloaddition is also discussed.
10

Structurally constrained peptides as protein-protein interaction modulators

Ortet, Paula Cristina Teixeira 08 July 2021 (has links)
A limited number of drug targets can be exploited by conventional drug-like compounds as the vast majority of disease-associated targets are involved in protein-protein interactions (PPI). PPI targets possess binding surfaces that lack a well-defined hydrophobic pocket amenable for binding to small drug-like compounds. A new class of therapeutics that has shown great potential at modulating PPI are macrocyclic peptides, particularly for their ability to bind to large and topologically complex protein surfaces as well as their potential to access intracellular targets. However, the efficiency of macrocyclic peptides at mediating PPIs and permeating cell membranes is conformation dependent. Here, I describe the role of peptide conformation on target recognition using three clinically relevant PPI targets: the Kelch like ECH Associated Protein-1 (KEAP1), (Chapter Two and Chapter Three); the RET receptor tyrosine kinase (Chapter Four); and β-catenin (Chapter Five). Guided by published X-ray crystal structures, peptides derived from PPI epitopes were designed and structurally constrained to mimic the conformation of the natural PPI recognition motif. In Chapter Two, I report the development of a cyclic heptapeptide derived from the transcription factor Nuclear Factor (Erythroid-derived 2)-Like 2 (Nrf2) with similar affinity for KEAP1 as native Nrf2 through conformational optimization of a linear Nrf2-derived heptapeptide. Efforts to improve the potency and physicochemical properties of the cyclic heptapeptide are discussed in Chapter Three. In Chapter Four, I describe the design of dimeric peptides as tool compounds to investigate the mechanism by which the interaction between glial cell-line derived neurotrophic factor family ligands (GFLs) and GPI-linked co-receptors, GFRα, induce RET signaling. These peptides were derived from the β-sheet regions of GFLs, GDNF and ART, that interact with GFRα1 and GFRα3, respectively. Peptide cyclization and the introduction of a β-turn promoting motif yielded GFL mimetic peptides with stronger affinity for GFRα. Lastly, Chapter Five focuses on exploring the scope of i, i+4 carbamate and amino-staples as a novel peptide stapling system to stabilize α-helical peptides. An axin-derived α-helical peptide that disrupts the β-catenin/TCF4 interaction was used as a model to determine the effect of peptide α-helical stabilization on binding affinity for β-catenin. / 2023-07-07T00:00:00Z

Page generated in 0.0406 seconds