• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 6
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 18
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

ASYMPTOTIC GIANT BRANCH POPULATIONS IN COMPOSITE STELLAR SYSTEMS.

COOK, KEM HOLLAND. January 1987 (has links)
This dissertation presents a technique for the identification and classification of late-type stars and for the estimation of M star metallicities. The technique uses broad-band, V and I, CCD images to identify red stars and two intermediate-band CCD images to classify these as carbon or M types. One of the intermediate passbands is centered on a TiO absorption band at 7750Å and the other is centered on a CN absorption band at 8100Å. Color-color plots of V-I versus the intermediate-band index, 77-81, clearly distinguishes carbon from M stars. Observations of both early- and late-type stars were used to define the 77-81 system based upon the intermediate-band filters. The TiO bandstrength deduced from the 77-81 color as a function of V-I color was investigated for field giants and giants in 12 globular clusters. A linear correlation between [Fe/H] and the V-I color at a given TiO bandstrength was found. This correlation can be used to estimate the metallicity of M giants. The stellar population of a field in Baade's Window was examined using this technique. Many late-M stars and no carbon stars were found. The color-color diagram for Baade's Window suggests a range of metallicities for the M giants of [Fe/H] ≈ -0.4 to > +0.2. The stellar population of the Sagittarius Dwarf Irregular galaxy (Sagdig) was examined using the 77-81 system. A method for estimating reddening based upon the color mode of foreground stars was developed for the analysis of the Sagdig data. Sagdig is estimated to be ~ 1.3 megaparsecs distant. Bright blue and red stars in Sagdig are evidence for recent star formation. Carbon stars were identified in Sagdig. They display a bimodal luminosity and color distribution which suggests distinct epochs of star forming activity between 1 and 10 Gyr ago. The spatial distribution of carbon stars and bright red stars in Sagdig shows this galaxy to be much larger than previously thought.
22

Double White Dwarfs as Probes of Single and Binary Star Evolution

Andrews, Jeffrey January 2016 (has links)
As the endpoints of stars less massive than roughly eight solar masses, the population of Galactic white dwarfs (WD) contain information about complex stellar evolution processes. Associated pairs of WDs add an extra degree of leverage; both WDs must have formed and evolved together. The work presented in this dissertation uses various populations of double WDs (DWD) to constrain evolution of both single and binary stars. One example is the set of low-mass WDs with unseen WD companions, which are formed through a dynamically-unstable mass loss process called the common envelope. To work toward a quantitative understanding of the common envelope, we develop and apply a Bayesian statistical technique to identify the masses of the unseen WD companions. We provide results which can be compared to evolutionary models and hence a deeper understanding of how binary stars evolve through a common envelope. The statistical technique we develop can be applied to any population of single-line spectroscopic binaries. Binaries widely separated enough that they avoid any significant interaction independently evolve into separate WDs that can be identified in photometric and astrometric surveys. We discuss techniques for finding these objects, known as wide DWDs. We present a catalog of 142 candidate wide DWDs, combining both previously detected systems and systems we identify in our searches in the Sloan Digital Sky Survey. Having been born at the same time, the masses and cooling ages of the WDs in wide DWDs, obtained with our spectroscopic follow-up campaign can be used to constrain the initial-final mass relation, which relates a main sequence star to the mass of the WD into which it will evolve. We develop a novel Bayesian technique to interpret our data and present our resulting constraints on this relation which are particularly strong for initial masses between two and four solar masses. During this process, we identified one wide DWD, HS 2220+2146, that was peculiar since the more massive WD in this system evolved second. We construct an evolutionary formation scenario in which the system began as a hierarchical triple in which the inner binary merged (possibly due to Kozai-Lidov oscillations) forming a post-blue straggler binary. The system then evolved into the DWD we observe today. We further discuss the potential for identifying more wide DWDs, including peculiar systems like HS 2220+2146, in future surveys such as Gaia.
23

The structure of common-envelope remnants

Hall, Philip David January 2015 (has links)
No description available.
24

Post asymptotic giant branch and central stars of planetary nebulae in the Galactic halo

Weston, Simon January 2012 (has links)
Post asymptotic giant branch (post-AGB) stars, central stars of planetary nebulae (CSPNe) and planetary nebulae (PNe) are important phases of stellar evolution as the material they feedback is the seed of subsequent star formation in a galaxy. The majority of low and intermediate mass stars are expected to evolve through these channels, however, it is uncertain how many actually do, and at what rate. The Galactic halo, with its older population, provides a direct test of evolutionary models for low mass stars. Birthrate estimates of PNe are uncertain and worse still, are in contradiction with accepted white dwarf (WD) birthrate estimates. Much of the uncertainty stems from the lack of complete samples and poorly determined distance estimates. New surveys such as the Sloan Digital Sky Survey (SDSS), Galaxy Evolutionary Ex- plorer (GALEX) and the INT Photometric H® Survey (IPHAS) have discovered many new PNe and have observed the far edges of the Galaxy. Improved methods of determining distances to CSPNe are presented here, using model atmospheres, evolutionary tracks and high resolution reddening maps utilising these revolution- ary surveys. Locating the CSPN is non-trivial particularly for evolved PNe, as they are ex- tended with their central star often displaced from the centre of the nebula. There- fore, photometric criteria are required to locate the CSPN in the nebula’s field. Synthetic photometry of the CSPNe is derived from spectral energy distributions (SEDs) computed from a grid of model atmospheres covering the parameter range of CSPNe. The SEDs are convolved with filter transmission curves to compute synthetic magnitudes for a given photometric system which are then calibrated with standard stars and WDs. A further project borne out of a search for luminous central stars of faint PNe, resulted in a systematic search for post-AGB stars in the Galactic halo. In this work, new candidate halo post-AGB stars are discovered from a search through the SDSS spectroscopic database. Combined with previously identified halo post- AGB stars, including the results of a sub-sample from the Palomar-Green (PG) survey, the number of observed and predicted populations are compared. The number of observed post-AGB candidates shows a remarkable deficit to expecta- tions. A survey within a subset of the photometric database of SDSS supports the findings of the PG and SDSS spectroscopic surveys. These findings provide strong evidence for a lack of post-AGB stars in the Galac- tic halo and thick disc. A plausible explanation is that a large fraction of stars in these old, metal-poor populations are evolving via alternative channels. The implications of such a result are far reaching with knock on effects for stellar evolutionary theory, galactic evolution and extragalactic redshift estimates.
25

Observational constraints on low-mass stellar evolution and planet formation

Birkby, Jayne Louise January 2012 (has links)
No description available.
26

The Prototypical Young L/T-Transition Dwarf HD 203030B Likely Has Planetary Mass

Miles-Páez, Paulo A., Metchev, Stanimir, Luhman, Kevin L., Marengo, Massimo, Hulsebus, Alan 29 November 2017 (has links)
Upon its discovery in 2006, the young L7.5 companion to the solar analog HD 203030 was found to be approximate to 200 K cooler than older late-L dwarfs, which is quite unusual. HD. 203030B offered the first clear indication that the effective temperature at the L-to-T spectral type transition depends on surface gravity: now a well-known characteristic of low-gravity ultra-cool dwarfs. An initial age analysis of the G8V primary star indicated that the system was 130-400 Myr old, and so the companion would be between 12 and 31 M-Jup. Using moderate-resolution near-infrared spectra of HD. 203030B, we now find features of very low gravity comparable to those of 10-150 Myr old L7-L8 dwarfs. We also obtained more accurate near-infrared and Spitzer/IRAC photometry, and we find a (J - K) MKO color of 2.56 +/- 0.13 mag-comparable to those observed in other young planetary-mass objects-and a luminosity of log (L-bol/L-circle dot) = -4.75 +/- 0.04 dex. We further re-assess the evidence for the young age of the host star, HD 203030, with a more comprehensive analysis of the photometry and updated stellar activity measurements and age calibrations. Summarizing the age diagnostics for both components of the binary, we adopt an age of 100 Myr for HD 203030B and an age range of 30-150 Myr. Using cloudy evolutionary models, the new companion age range and luminosity result in a mass of 11 M-Jup with a range of 8-15 M-Jup, and an effective temperature of 1040 +/- 50 K.
27

12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791

Szigeti, László, Mészáros, Szabolcs, Smith, Verne V, Cunha, Katia, Lagarde, Nadège, Charbonnel, Corinne, García-Hernández, D A, Shetrone, Matthew, Pinsonneault, Marc, Allende Prieto, Carlos, Fernández-Trincado, J G, Kovács, József, Villanova, Sandro 03 1900 (has links)
Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H] = +0.39 +/- 0.06 (Cunha et al. 2015). We used high-resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment. The advantage of using high-resolution spectra in the H band is that lines of CO are well represented and their line profiles are sensitive to the variation of C-12/C-13. Values of the C-12/C-13 ratio were obtained from a spectrum synthesis analysis. The derived C-12/C-13 ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between C-12/C-13, mass, metallicity, and evolutionary status.
28

3D hydrodynamic simulations of carbon burning in massive stars

Cristini, A., Meakin, C., Hirschi, R., Arnett, D., Georgy, C., Viallet, M., Walkington, I. 10 1900 (has links)
We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15M circle dot 1D stellar evolution model. We consider models with 128(3), 256(3), 512(3), and 1024(3) zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large Peclet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, Ri(B) (alpha Ri(B)(-alpha) a, 0.5 less than or similar to alpha less than or similar to 1.0). We thus suggest the use of Ri(B) as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing.
29

Spherically Symmetric Model Stellar Atmospheres and Limb Darkening: II. Limb-Darkening Laws, Gravity-Darkening Coefficients and Angular Diameter Corrections for FGK Dwarf Stars

Neilson, H. R., Lester, J. B. 09 August 2013 (has links)
Limb darkening is a fundamental ingredient for interpreting observations of planetary transits, eclipsing binaries, optical/infrared interferometry and microlensing events. However, this modeling traditionally represents limb darkening by a simple law having one or two coefficients that have been derived from plane-parallel model stellar atmospheres, which has been done by many researchers. More recently, researchers have gone beyond plane-parallel models and considered other geometries. We previously studied the limb-darkening coefficients from spherically symmetric and plane-parallel model stellar atmospheres for cool giant and supergiant stars, and in this investigation we apply the same techniques to FGK dwarf stars. We present limb-darkening coefficients, gravity-darkening coefficients and interferometric angular diameter corrections from Atlas and SAtlas model stellar atmospheres. We find that sphericity is important even for dwarf model atmospheres, leading to significant differences in the predicted coefficients.
30

Spherically Symmetric Model Stellar Atmospheres and Limb Darkening: II. Limb-Darkening Laws, Gravity-Darkening Coefficients and Angular Diameter Corrections for FGK Dwarf Stars

Neilson, H. R., Lester, J. B. 09 August 2013 (has links)
Limb darkening is a fundamental ingredient for interpreting observations of planetary transits, eclipsing binaries, optical/infrared interferometry and microlensing events. However, this modeling traditionally represents limb darkening by a simple law having one or two coefficients that have been derived from plane-parallel model stellar atmospheres, which has been done by many researchers. More recently, researchers have gone beyond plane-parallel models and considered other geometries. We previously studied the limb-darkening coefficients from spherically symmetric and plane-parallel model stellar atmospheres for cool giant and supergiant stars, and in this investigation we apply the same techniques to FGK dwarf stars. We present limb-darkening coefficients, gravity-darkening coefficients and interferometric angular diameter corrections from Atlas and SAtlas model stellar atmospheres. We find that sphericity is important even for dwarf model atmospheres, leading to significant differences in the predicted coefficients.

Page generated in 0.0689 seconds