• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 2
  • Tagged with
  • 97
  • 97
  • 31
  • 26
  • 26
  • 25
  • 22
  • 21
  • 21
  • 20
  • 18
  • 18
  • 17
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Spectroscopic characterisation of microlensing events

Santerne, A., Beaulieu, J.-P., Rojas Ayala, B., Boisse, I., Schlawin, E., Almenara, J.-M., Batista, V., Bennett, D., Díaz, R. F., Figueira, P., James, D. J., Herter, T., Lillo-Box, J., Marquette, J. B., Ranc, C., Santos, N. C., Sousa, S. G. 17 November 2016 (has links)
The microlensing event OGLE-2011-BLG-0417 is an exceptionally bright lens binary that was predicted to present radial velocity variation at the level of several km s(-1). Pioneer radial velocity follow-up observations with the UVES spectrograph at the ESO-VLT of this system clearly ruled out the large radial velocity variation, leaving a discrepancy between the observation and the prediction. In this paper, we further characterise the microlensing system by analysing its spectral energy distribution (SED) derived using the UVES spectrum and new observations with the ARCoIRIS (CTIO) near-infrared spectrograph and the Keck adaptive optics instrument NIRC2 in the J, H, and Ks-bands. We determine the mass and distance of the stars independently from the microlensing modelling. We find that the SED is compatible with a giant star in the Galactic bulge and a foreground star with a mass of 0.94 +/- 0.09 M-circle dot at a distance of 1.07 +/- 0.24 kpc. We find that this foreground star is likely the lens. Its parameters are not compatible with the ones previously reported in the literature (0.52 +/- 0.04 M-circle dot at 0.95 +/- 0.06 kpc), based on the microlensing light curve. A thoughtful re-analysis of the microlensing event is mandatory to fully understand the reason of this new discrepancy. More importantly, this paper demonstrates that spectroscopic follow-up observations of microlensing events are possible and provide independent constraints on the parameters of the lens and source stars, hence breaking some degeneracies in the analysis. UV-to-NIR low-resolution spectrographs like X-shooter (ESO VLT) could substantially contribute to this follow-up efforts, with magnitude limits above all microlensing events detected so far.
32

SEEDS DIRECT IMAGING OF THE RV-DETECTED COMPANION TO V450 ANDROMEDAE, AND CHARACTERIZATION OF THE SYSTEM

Hełminiak, K. G., Kuzuhara, M., Mede, K., Brandt, T. D., Kandori, R., Suenaga, T., Kusakabe, N., Narita, N., Carson, J. C., Currie, T., Kudo, T., Hashimoto, J., Abe, L., Akiyama, E., Brandner, W., Feldt, M., Goto, M., Grady, C. A., Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S. S., Henning, T., Hodapp, K. W., Ishii, M., Iye, M., Janson, M., Knapp, G. R., Kwon, J., Matsuo, T., McElwain, M. W., Miyama, S., Morino, J.-I., Moro-Martin, A., Nishimura, T., Ryu, T., Pyo, T.-S., Serabyn, E., Suto, H., Suzuki, R., Takahashi, Y. H., Takami, M., Takato, N., Terada, H., Thalmann, C., Turner, E. L., Watanabe, M., Wisniewski, J., Yamada, T., Takami, H., Usuda, T., Tamura, M. 14 November 2016 (has links)
We report the direct imaging detection of a low-mass companion to a young, moderately active star V450. And, that was previously identified with the radial velocity (RV) method. The companion was found in high-contrast images obtained with the Subaru Telescope equipped with the HiCIAO camera and AO188 adaptive optics system. From the public ELODIE and SOPHIE archives we extracted available high-resolution spectra and RV measurements, along with RVs from the Lick planet search program. We combined our multi-epoch astrometry with these archival, partially unpublished RVs, and found that the companion is a low-mass star, not a brown dwarf, as previously suggested. We found the best-fitting dynamical masses to be m(1) = 1.141(-0.091)(+0.037)and m(2) = 0.279(-0.020)(+0.023) M-circle dot. We also performed spectral analysis of the SOPHIE spectra with the iSpec code. Hipparcos time-series photometry shows a periodicity of P = 5.743 day, which is also seen in the SOPHIE spectra as an RV modulation of the star A. We interpret it as being caused by spots on the stellar surface, and the star to be rotating with the given period. From the rotation and level of activity, we found that the system is 380(-100)(+220) Myr old, consistent with an isochrone analysis (220(-90)(+2120) Myr). This work may serve as a test case for future studies of low-mass stars, brown dwarfs, and exoplanets by combination of RV and direct imaging data.
33

Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk

Debes, John H., Poteet, Charles A., Jang-Condell, Hannah, Gaspar, Andras, Hines, Dean, Kastner, Joel H., Pueyo, Laurent, Rapson, Valerie, Roberge, Aki, Schneider, Glenn, Weinberger, Alycia J. 31 January 2017 (has links)
We have obtained new images of the protoplanetary disk orbiting TW Hya in visible, total intensity light with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST), using the newly commissioned BAR5 occulter. These HST/STIS observations achieved an inner working angle of similar to 0."2, or 11.7 au, probing the system at angular radii coincident with recent images of the disk obtained by ALMA and in polarized intensity near-infrared light. By comparing our new STIS images to those taken with STIS in 2000 and with NICMOS in 1998, 2004, and 2005, we demonstrate that TW Hya's azimuthal surface brightness asymmetry moves coherently in position angle. Between 50 au and 141 au we measure a constant angular velocity in the azimuthal brightness asymmetry of 22 degrees.7. 7 yr(-1) in a counterclockwise direction, equivalent to a period of 15.9. yr assuming circular motion. Both the (short) inferred period and lack of radial dependence of the moving shadow pattern are inconsistent with Keplerian rotation at these disk radii. We hypothesize that the asymmetry arises from the fact that the disk interior to 1 au is inclined and precessing owing to a planetary companion, thus partially shadowing the outer disk. Further monitoring of this and other shadows on protoplanetary disks potentially opens a new avenue for indirectly observing the sites of planet formation.
34

The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry

Bond, Howard E., Schaefer, Gail H., Gilliland, Ronald L., Holberg, Jay B., Mason, Brian D., Lindenblad, Irving W., Seitz-McLeese, Miranda, Arnett, W. David, Demarque, Pierre, Spada, Federico, Young, Patrick A., Barstow, Martin A., Burleigh, Matthew R., Gudehus, Donald 08 May 2017 (has links)
Sirius, the seventh-nearest stellar system, is a visual binary containing the metallic-line A1. V star Sirius. A, the brightest star in the sky, orbited in a 50.13. year period by Sirius B, the brightest and nearest white dwarf (WD). Using images obtained over nearly two decades with the Hubble Space Telescope (HST), along with photographic observations covering almost 20 years and nearly 2300 historical measurements dating back to the 19th century, we determine precise orbital elements for the visual binary. Combined with the parallax and the motion of the A component, these elements yield dynamical masses of 2.063 +/- 0.023 M circle dot and 1.018 +/- 0.011 M circle dot for Sirius. A and B, respectively. Our precise HST astrometry rules out third bodies orbiting either star in the system, down to masses of similar to 15-25 M-Jup. The location of Sirius. B in the Hertzsprung-Russell diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass, and implies a cooling age of similar to 126 Myr. The position of Sirius. B on the mass-radius plane is also consistent with WD theory, assuming a carbon-oxygen core. Including the pre-WD evolutionary timescale of the assumed progenitor, the total age of Sirius B is about 228 +/- 10 Myr. We calculated evolutionary tracks for stars with the dynamical mass of Sirius A, using two independent codes. We find it necessary to assume a slightly subsolar metallicity, of about 0.85 Z circle dot, to fit its location on the luminosity-radius plane. The age of Sirius. A based on these models is about 237-247. Myr, with uncertainties of +/- 15 Myr, consistent with that of the WD companion. We discuss astrophysical puzzles presented by the Sirius system, including the probability that the two stars must have interacted in the past, even though there is no direct evidence for this and the orbital eccentricity remains high.
35

Exocometary gas in the HD 181327 debris ring

Marino, S., Matrà, L., Stark, C., Wyatt, M. C., Casassus, S., Kennedy, G., Rodriguez, D., Zuckerman, B., Perez, S., Dent, W. R. F., Kuchner, M., Hughes, A. M., Schneider, G., Steele, A., Roberge, A., Donaldson, J., Nesvold, E. 11 August 2016 (has links)
An increasing number of observations have shown that gaseous debris discs are not an exception. However, until now, we only knew of cases around A stars. Here we present the first detection of (CO)-C-12 (2-1) disc emission around an F star, HD 181327, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) observations at 1.3 mm. The continuum and CO emission are resolved into an axisymmetric disc with ring-like morphology. Using a Markov chain Monte Carlo method coupled with radiative transfer calculations, we study the dust and CO mass distribution. We find the dust is distributed in a ring with a radius of 86.0 +/- 0.4 au and a radial width of 23.2 +/- 1.0 au. At this frequency, the ring radius is smaller than in the optical, revealing grain size segregation expected due to radiation pressure. We also report on the detection of low-level continuum emission beyond the main ring out to similar to 200 au. We model the CO emission in the non-local thermodynamic equilibrium regime and we find that the CO is co-located with the dust, with a total CO gas mass ranging between 1.2 x 10(-6) M-aS center dot and 2.9 x 10(-6) M-aS center dot, depending on the gas kinetic temperature and collisional partners densities. The CO densities and location suggest a secondary origin, i.e. released from icy planetesimals in the ring. We derive a CO+CO2 cometary composition that is consistent with Solar system comets. Due to the low gas densities, it is unlikely that the gas is shaping the dust distribution.
36

GW Librae: a unique laboratory for pulsations in an accreting white dwarf

Toloza, O., Gänsicke, B. T., Hermes, J. J., Townsley, D. M., Schreiber, M. R., Szkody, P., Pala, A., Beuermann, K., Bildsten, L., Breedt, E., Cook, M., Godon, P., Henden, A. A., Hubeny, I., Knigge, C., Long, K. S., Marsh, T. R., de Martino, D., Mukadam, A. S., Myers, G., Nelson, P., Oksanen, A., Patterson, J., Sion, E. M., Zorotovic, M. 11 July 2016 (has links)
Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and the response of these modes to changes in the white dwarf temperature. Among all pulsating cataclysmic variable white dwarfs, GW Librae stands out by having a well-established observational record of three independent pulsation modes that disappeared when the white dwarf temperature rose dramatically following its 2007 accretion outburst. Our analysis of Hubble Space Telescope (HST) ultraviolet spectroscopy taken in 2002, 2010, and 2011, showed that pulsations produce variations in the white dwarf effective temperature as predicted by theory. Additionally in 2013 May, we obtained new HST/Cosmic Origin Spectrograph ultraviolet observations that displayed unexpected behaviour: besides showing variability at a parts per thousand integral 275 s, which is close to the post-outburst pulsations detected with HST in 2010 and 2011, the white dwarf exhibits high-amplitude variability on an a parts per thousand integral 4.4 h time-scale. We demonstrate that this variability is produced by an increase of the temperature of a region on white dwarf covering up to a parts per thousand integral 30 per cent of the visible white dwarf surface. We argue against a short-lived accretion episode as the explanation of such heating, and discuss this event in the context of non-radial pulsations on a rapidly rotating star.
37

DEEP HST /STIS VISIBLE-LIGHT IMAGING OF DEBRIS SYSTEMS AROUND SOLAR ANALOG HOSTS

Schneider, Glenn, Grady, Carol A., Stark, Christopher C., Gaspar, Andras, Carson, Joseph, Debes, John H., Henning, Thomas, Hines, Dean C., Jang-Condell, Hannah, Kuchner, Marc J., Perrin, Marshall, Rodigas, Timothy J., Tamura, Motohide, Wisniewski, John P. 19 August 2016 (has links)
We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD 202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar system's Edgeworth-Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both similar to 2.3 Gyr) currently the oldest CDSs imaged in visible or near-IR light. These deep (10-14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy. using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse/low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F-disk/F-star optical brightness similar to t(-0.8), similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.
38

Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf

Farihi, J., Koester, D., Zuckerman, B., Vican, L., Gänsicke, B. T., Smith, N., Walth, G., Breedt, E. 11 December 2016 (has links)
The T-eff = 20 800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock-forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log (O/He) = -3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log (H/He) = -1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion time-scales for a helium atmosphere white dwarf, of no more than a few hundred years, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2 x 10(9) g s(-1), and at least four times higher than for any white dwarf with a comparable diffusion time-scale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris.
39

Detection of Exocometary CO within the 440Myr Old Fomalhaut Belt: A Similar CO+ CO2 Ice Abundance in Exocomets and Solar System Comets

Matra, L., MacGregor, M. A., Kalas, P., Wyatt, M. C., Kennedy, G. M., Wilner, D. J., Duchene, G., Hughes, A. M., Pan, M., Shannon, A., Clampin, M., Fitzgerald, M. P., Graham, J. R., Holland, W. S., Panic, O., Su, K. Y. L. 07 June 2017 (has links)
Recent Atacama Large Millimeter/submillimeter Array observations present mounting evidence for the presence of exocometary gas released within Kuiper Belt analogs around nearby main-sequence stars. This represents a unique opportunity to study their ice reservoir at the younger ages when volatile delivery to planets is most likely to occur. We here present the detection of CO J=2-1 emission colocated with dust emission from the cometary belt in the 440 Myr old Fomalhaut system. Through spectrospatial filtering, we achieve a 5.4s detection and determine that the ring's sky-projected rotation axis matches that of the star. The CO mass derived (0.65-42) x10(-7) M-circle plus is the lowest of any circumstellar disk detected to date and must be of exocometary origin. Using a steady-state model, we estimate the CO+ CO2 mass fraction of exocomets around Fomalhaut to be between 4.6% and 76%, consistent with solar system comets and the two other belts known to host exocometary gas. This is the first indication of a similarity in cometary compositions across planetary systems that may be linked to their formation scenario and is consistent with direct interstellar medium inheritance. In addition, we find tentative evidence that(49 +/- 27)% of the detected flux originates from a region near the eccentric belt's pericenter. If confirmed, the latter may be explained through a recent impact event or CO pericenter glow due to exocometary release within a steady-state collisional cascade. In the latter scenario, we show how the azimuthal dependence of the CO release rate leads to asymmetries in gas observations of eccentric exocometary belts.
40

Complex Spiral Structure in the HD 100546 Transitional Disk as Revealed by GPI and MagAO

Follette, Katherine B., Rameau, Julien, Dong, Ruobing, Pueyo, Laurent, Close, Laird M., Duchene, Gaspard, Fung, Jeffrey, Leonard, Clare, Macintosh, Bruce, Males, Jared R., Marois, Christian, Millar-Blanchaer, Maxwell A., Morzinski, Katie M., Mullen, Wyatt, Perrin, Marshall, Spiro, Elijah, Wang, Jason, Ammons, S. Mark, Bailey, Vanessa P., Barman, Travis, Bulger, Joanna, Chilcote, Jeffrey, Cotten, Tara, De Rosa, Robert J., Doyon, Rene, Fitzgerald, Michael P., Goodsell, Stephen J., Graham, James R., Greenbaum, Alexandra Z., Hibon, Pascale, Hung, Li-Wei, Ingraham, Patrick, Kalas, Paul, Konopacky, Quinn, Larkin, James E., Maire, Jerome, Marchis, Franck, Metchev, Stanimir, Nielsen, Eric L., Oppenheimer, Rebecca, Palmer, David, Patience, Jennifer, Poyneer, Lisa, Rajan, Abhijith, Rantakyro, Fredrik T., Savransky, Dmitry, Schneider, Adam C., Sivaramakrishnan, Anand, Song, Inseok, Soummer, Remi, Thomas, Sandrine, Vega, David, Wallace, J. Kent, Ward-Duong, Kimberly, Wiktorowicz, Sloane, Wolff, Schuyler 19 May 2017 (has links)
We present optical and near-infrared high-contrast images of the transitional disk HD 100546 taken with the Magellan Adaptive Optics system (MagAO) and the Gemini Planet Imager (GPI). GPI data include both polarized intensity and total intensity imagery, and MagAO data are taken in Simultaneous Differential Imaging mode at Ha. The new GPI H-band total intensity data represent a significant enhancement in sensitivity and field rotation compared to previous data sets and enable a detailed exploration of substructure in the disk. The data are processed with a variety of differential imaging techniques (polarized, angular, reference, and simultaneous differential imaging) in an attempt to identify the disk structures that are most consistent across wavelengths, processing techniques, and algorithmic parameters. The inner disk cavity at 15 au is clearly resolved in multiple data sets, as are a variety of spiral features. While the cavity and spiral structures are identified at levels significantly distinct from the neighboring regions of the disk under several algorithms and with a range of algorithmic parameters, emission at the location of HD 100546 "c" varies from point-like under aggressive algorithmic parameters to a smooth continuous structure with conservative parameters, and is consistent with disk emission. Features identified in the HD 100546 disk bear qualitative similarity to computational models of a moderately inclined two-armed spiral disk, where projection effects and wrapping of the spiral arms around the star result in a number of truncated spiral features in forward-modeled images.

Page generated in 0.0699 seconds