1 |
Magnetic fields of cool active starsRosén, Lisa January 2016 (has links)
Magnetic fields are present throughout the universe and are very important for many astrophysical processes. Magnetic field influences a star throughout its life and affects nearby objects such as planets. Stellar magnetic field can be detected by measuring the Zeeman splitting of spectral lines in the intensity spectra (Stokes I) if the field is strong, or by analyzing polarization spectra if the field is weak. Magnetic fields in stars similar to the Sun are ubiquitous but, in general, relatively weak. Until recently these fields were detected through circular polarization (Stokes V) only since linear polarization (Stokes QU) is significantly weaker. The information embedded in different Stokes spectra is used for reconstruction of the surface magnetic field topology with Zeeman Doppler imaging (ZDI) technique. However, cool stars often have complex field geometries and this, combined with a low field strength, partial Stokes parameter observations and the presence of cool spots, makes accurate magnetic mapping difficult. We have performed numerical tests of ZDI to investigate some of the problems of magnetic inversions and ways to overcome them. The most reliable results were found when magnetic field and temperature inhomogeneities were modelled simultaneously and all four Stokes parameters were included in the reconstruction process. We carried out observations of active cool stars in all four Stokes parameters trying to find an object with linear polarization signatures suitable for ZDI. The RS CVn star II Peg was identified as a promising target, showing exceptionally strong linear polarization signatures. We reconstructed the magnetic field in II Peg using full Stokes vector observations for the first time in a cool star. Compared to the magnetic maps recovered from the Stokes IV spectra, the four Stokes parameter results reveal a significantly stronger and more complex surface magnetic field and a more compact stellar magnetosphere. Spectropolarimetric observations and magnetic inversions can also be used to investigate magnetic activity of the young Sun and its implications for the solar system past. To this end, we studied a sample of six stars with parameters very similar to the present Sun, but with ages of only 100-650 Myr. Magnetic field maps of these young solar analogues suggest a significant decrease of the field strength in the age interval 100-250 Myr and a possible change in the magnetic field topology for stars older than about 600 Myr.
|
2 |
Stellar models with magnetism and rotation : mixing length theories and convection simulationsIreland, Lewis George January 2018 (has links)
Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. In this thesis, we explore this possibility using a combination of 1D stellar models, 2D and 3D simulations, and analytical theory. First, we examine this issue using 1D stellar models constructed using the Modules for Experiments in Stellar Astrophysics (MESA) code. We begin by considering standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modelled by decreasing a depth-independent mixing length theory (MLT) parameter αMLT. We provide formulae linking changes in αMLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson (1979) and MacDonald and Mullan (2014) respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald and Mullan (2014), could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent αMLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterises rotation and/or magnetism using the two formulations above. We provide formulae linking the radially-variable αMLT to these putative MLT reformulations. We make further comparisons between MLT and simulations of convection, to establish how heat transport and stellar structure are influenced by rotation and magnetism, by looking at the entropy content of 2D local and 3D global convective calculations. Using 2D “box in a star” simulations, created using the convection code Dedalus, we investigate changes in bulk properties of the specific entropy for increasingly stratified domains. We observe regions stable against convection near the bottom boundary, resulting in the specific entropy in the bulk of the domain exceeding the bottom boundary value: this could be a result of physical effects, such as increased amounts of viscous dissipation for more supercritical, highly stratified cases, but may also be influenced by the artificial boundary conditions imposed by these local simulations. We then turn to 3D global simulations, created using the convection code Rayleigh, and investigate these same properties as a function of rotation rate. We find the average of the shell-averaged specific entropy gradient in the middle third of the domain to scale with rotation rate in a similar fashion to the scaling law derived via MLT arguments in Barker et al. (2014), i.e., |⟨ds/dr⟩| ∝ Ω^4/5.
|
3 |
The MiMeS Survey of Magnetism in Massive Stars: Introduction and OverviewWade, G. A., Neiner, C., Alecian, E., Grunhunt, H. H., Petit, V., Batz, B., Bohlender, D. A., Cohen, D. H., Henrichs, H. F., Kochukhov, O., Landstreet, J. D., Manset, N., Martins, F., Mathis, S., Oksala, M. E., Owocki, S. P., Rivinius, Th., Schultz, M. E., Sundqvist, J. O., Townsend, R. H.D., Doula, A., Bouret, J. C., Braithwaite, J., Briquet, M., Carciofi, A. C., David-Uraz, A., Folsom, C. P., Fullerton, A. W., Leroy, B., Marcolino, W. L.F., Moffat, A. F.J., Naze, Y., St Louis, N., Auriere, M., Bagnulo, S., Bailey, J. D., Barba, R. H., Blazere, A., Bohm, T., Catala, C., Donati, J-F, Ferrario, L., Harrington, D., Howarth, I. D., Ignace, Richard, Kaper, L., Luftinger, T., Prinja, R., Vink, J. S., Weiss, W. W., Yakunin, I. 11 December 2015 (has links)
The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada–France–Hawaii Telescope, Narval at the Télescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.
|
4 |
Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic ParticlesFraschetti, F., Drake, J. J., Cohen, O., Garraffo, C. 30 January 2018 (has links)
The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T. Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1-10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T. Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.
|
5 |
Time-resolved spectropolarimetric observations of polars WX LMi and BY CamTutar Özdarcan, D., Smith, P. S., Keskin, V. 07 1900 (has links)
Time-series spectropolarimetric observations of polar WX LMi and asynchronous polar BY Cam are presented. Magnetic field properties, radial velocities and optical polarization are investigated via consecutive observations with good phase sampling during a single orbital cycle. Both systems are found to have a decentred dipole magnetic field configuration. One of the poles of WX LMi has a field strength of 49 MG, while the other pole may have possible field strengths of 69, 104 or 207 MG, depending on the harmonic numbers of the cyclotron humps observed in the circularly polarized spectrum. For BY Cam, a field strength of 168 MG is found for one of the poles, while field strengths of 70, 160 or 212 MG are possible for the other pole.
|
6 |
A Scaling Relationship for Non-thermal Radio Emission From Ordered Magnetospheres: From the Top of the Main Sequence to PlanetsLeto, P., Trigilio, C., Krtička, J., Fossati, L., Ignace, R., Shultz, M. E., Buemi, C. S., Cerrigone, L., Umana, G., Ingallinera, A., Bordiu, C., Pillitteri, I., Bufano, F., Oskinova, L. M., Agliozzo, C., C., F., Riggi, S., Loru, S. 01 October 2021 (has links)
In this paper, we present the analysis of incoherent non-thermal radio emission from a sample of hot magnetic stars, ranging from early-B to early-A spectral type. Spanning a wide range of stellar parameters and wind properties, these stars display a commonality in their radio emission which presents new challenges to the wind scenario as originally conceived. It was thought that relativistic electrons, responsible for the radio emission, originate in current sheets formed, where the wind opens the magnetic field lines. However, the true mass-loss rates from the cooler stars are too small to explain the observed non-thermal broad-band radio spectra. Instead, we suggest the existence of a radiation belt located inside the inner magnetosphere, similar to that of Jupiter. Such a structure explains the overall indifference of the broad-band radio emissions on wind mass-loss rates. Further, correlating the radio luminosities from a larger sample of magnetic stars with their stellar parameters, the combined roles of rotation and magnetic properties have been empirically determined. Finally, our sample of early-type magnetic stars suggests a scaling relationship between the non-thermal radio luminosity and the electric voltage induced by the magnetosphere's co-rotation, which appears to hold for a broader range of stellar types with dipole-dominated magnetospheres (like the cases of the planet Jupiter and the ultracool dwarf stars and brown dwarfs). We conclude that well-ordered and stable rotating magnetospheres share a common physical mechanism for supporting the generation of non-thermal electrons.
|
7 |
The magnetic field of phi DraconisPapakonstantinou, Nikolaos January 2022 (has links)
Within this past decade, advances in spectropolarimetric analyses allowed mapping surface characteristics of nearby non-resolved stars with unique characteristics. In this study, we attempt mapping of the magnetic field structure and surface distribution of elements for such a star, the magnetic Ap star phi Dra. Using high-precision photometric data from TESS satellite, we improve its rotation period. Spectrum synthesis calculations allow compilation of a list of lines present in its spectrum. The resulting synthetic spectrum and observed NARVAL spectra are used to re-estimate element abundances. Least-squares deconvolved (LSD) intensity and circular polarisation profiles are then computed from a sample of 1260 metal lines. To determine which element(s) are most suitable for in-depth analysis, variability of LSD profiles is studied qualitatively for Fe, Cr and Si. The longitudinal magnetic field of phi Dra is calculated from LSD circular polarisation profiles. Stellar magnetic field maps and distributions of Fe concentration are derived through Zeeman Doppler Imaging (ZDI). The resulting maps of this study show five areas of high Fe concentrations, in the Northern stellar hemisphere. The magnetic field topology of phi Dra resulting from our analysis is that of an offset dipole with small quadrupole contributions. Our abundance and magnetic maps suggest correlation between high concentrations of Fe and high magnetic field strength. The field is primarily radial in 4 out of 5 such regions, contrary to theoretical expectations.
|
8 |
Evidence for Radio and X-Ray Auroral Emissions From the Magnetic B-Type Star ρ Oph ALeto, P., Trigilio, C., Leone, F., Pillitteri, I., Buemi, C. S., Fossati, L., Cavallaro, F., Oskinova, L. M., Ignace, R., Krtička, J., Umana, G., Catanzaro, G., Ingallinera, A., Bufano, F., Agliozzo, C., Phillips, N. M., Cerrigone, L., Riggi, S., Loru, S., Munari, M., Gangi, M., Giarrusso, M., Robrade, J. 21 April 2020 (has links)
We present new ATCA multiwavelength radio measurements (range 2.1–21.2 GHz) of the early-type magnetic star ρ Oph A, performed in 2019 March during three different observing sessions. These new ATCA observations evidence a clear rotational modulation of the stellar radio emission and the detection of coherent auroral radio emission from ρ Oph A at 2.1 GHz. We collected high-resolution optical spectra of ρ Oph A acquired by several instruments over a time span of about 10 yr. We also report new magnetic field measurements of ρ Oph A that, together with the radio light curves and the temporal variation of the equivalent width of the He I line (λ = 5015 Å), were used to constrain the rotation period and the stellar magnetic field geometry. The above results have been used to model the stellar radio emission, modelling that allowed us to constrain the physical condition of ρ Oph A’s magnetosphere. Past XMM–Newton measurements showed periodic X-ray pulses from ρ Oph A. We correlate the X-ray light curve with the magnetic field geometry of ρ Oph A. The already published XMM–Newton data have been re-analysed showing that the X-ray spectra of ρ Oph A are compatible with the presence of a non-thermal X-ray component. We discuss a scenario where the emission phenomena occurring at the extremes of the electromagnetic spectrum, radio and X-ray, are directly induced by the same plasma process. We interpret the observed X-ray and radio features of ρ Oph A as having an auroral origin.
|
9 |
The Auroral Radio Emission of the Magnetic B-Type Star ρ OphCLeto, P., Trigilio, C., Buemi, C. S., Leone, F., Pillitteri, I., Fossati, L., Cavallaro, F., Oskinova, L. M., Ignace, R., Krtička, J., Umana, G., Catanzaro, G., Ingallinera, A., Bufano, F., Riggi, S., Cerrigone, L., Loru, S., Schilliró, F., Agliozzo, C., Phillips, N. M., Giarrusso, M., Robrade, J. 01 November 2020 (has links)
The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multiwavelength (1.6-16.7 GHz) ATCA measurements of the early-type magnetic star ρ OphC, which is a flat-spectrum non-thermal radio source. The ρ OphC radio emission is partially circularly polarized with a steep spectral dependence: the fraction of polarized emission is about 60 at the lowest frequency sub-band (1.6 GHz) while is undetected at 16.7 GHz. This is clear evidence of coherent Auroral Radio Emission (ARE) from the ρ OphC magnetosphere. Interestingly, the detection of the ρ OphC's ARE is not related to a peculiar rotational phase. This is a consequence of the stellar geometry, which makes the strongly anisotropic radiation beam of the amplified radiation always pointed towards Earth. The circular polarization sign evidences mainly amplification of the ordinary mode of the electromagnetic wave, consistent with a maser amplification occurring within dense regions. This is indirect evidence of the plasma evaporation from the polar caps, a phenomenon responsible for the thermal X-ray aurorae. ρ OphC is not the first early-type magnetic star showing the O-mode dominated ARE but is the first star with the ARE always on view.
|
10 |
A Combined Multiwavelength VLA/ALMA/Chandra Study Unveils the Complex Magnetosphere of the B-Type Star HR5907Leto, P., Trigilio, Courtney, Oskinova, Lidia M., Ignace, Richard, Buemi, C. S., Umana, G., Ingallinera, A., Leone, F., Phillips, N. M., Agliozzo, C., Todt, H., Cerrigone, L. 01 May 2018 (has links)
We present new radio/millimeter measurements of the hot magnetic star HR 5907 obtained with the VLA and ALMA interferometers. We find that HR 5907 is the most radio luminous early type star in the cm–mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR 5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR 5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR 5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR 5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR 5907.
|
Page generated in 0.0595 seconds