Spelling suggestions: "subject:"start (early type)"" "subject:"stark (early type)""
1 |
Magnetic fields and the variable wind of the early-type supergiant β OriShultz, Matthew Eric 30 April 2012 (has links)
Supergiant stars of spectral types B and A are characterized by variable and structured winds, as revealed by variability of optical and ultraviolet spectral lines. Non-
radial pulsations and magnetically supported loops have been proposed as explanations for these phenomena. The latter hypothesis is tested using a time series of 65
high-resolution (λ/∆λ ∼ 65, 000) circular polarization (Stokes I and V ) spectra of
the late B type supergiant Rigel (β Ori, B8 Iae), obtained with the instruments ESPaDOnS and Narval at the Canada-France-Hawaii Telescope and the Bernard Lyot Telescope, respectively. Examination of the unpolarized (Stokes I) spectra using standard spectral analysis tools confirms complex line profile variability during the 5 month period of observations; the high spectral resolution allows the identification of a weak, transient Hα feature similar in behaviour to a High Velocity Absorption event. Analysis of the Stokes V spectra using the cross-correlation technique Least Squares Deconvolution (LSD) yields no evidence of a magnetic field in either LSD Stokes V profiles or longitudinal field measurements, with longitudinal field 1σ error bars of ∼ 12 G for individual observations, and a mean field in the best observed period of 3 ± 2 G. Synthetic LSD profiles fit to the observations using a Monte Carlo approach yield an upper limit on the surface dipolar field strength of Bdip ≤ 50 G for most orientations of the rotational and magnetic axes, lowered to Bdip ≤ 35 G if the mean LSD profile from the most densely time-sampled epoch (with an LSD SNR of ∼80,000) is used. A simple two-spot geometry representing the footpoints of a magnetic loop emerging from the photosphere yields upper limits on the spot magnetic fields of 60–600 G, depending on the filling factor of the spots. Given existing measurements of the mass loss rate and the wind terminal velocity, these results
cannot rule out a magnetically confined wind as, for Bdip ≤ 15 G, η∗ ≥ 1. However, the detailed pattern of line profile variability seems inconsistent with the periodic wind modulation characteristic of known magnetic early-type stars, suggesting that magnetic fields do not play a dominant role in Rigel’s variable winds. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2012-04-29 02:10:41.308
|
2 |
The Ages of A-StarsJones, Jeremy W 12 August 2016 (has links)
Stars with spectral type `A' (also called A-type stars or just A-stars) are bright intermediate mass stars (∼1.5-2.5 M⊙) that make up ∼1% of stars within 25 parsecs, and ∼20% of the brightest stars in the night sky (V < 3 mag). Most A-stars rotate rapidly with rotational velocities that range from ∼100 to ∼200 km/s in most cases, but can exceed 300 km/s. Such rapid rotation not only causes a star's observed properties (flux, temperature, and radius) to be inclination dependent, but also changes how the star evolves both chemically and structurally.
Herein we conduct an interferometric survey of nearby A-stars using the CHARA Array. The long baselines of this optical/infrared interferometer enable us to measure the angular sizes of stars as small as ∼0.2 mas, and directly map the oblate shapes of rotationally distorted stars. This in turn allows us to more accurately determine their photospheric properties and estimate their ages and masses by comparing to evolution models that account for rotation. To facilitate this survey, we construct a census of all 232 A-stars within 50 parsecs (the 50PASS) and from that construct a sample of A-stars (the OSESNA) that lend themselves to interferometric observations with the CHARA Array (i.e., are in the northern hemisphere and have no known, bright, and nearby companions - 108 stars in total). The observations are interpreted by constructing a physical model of a rapidly rotating star from which we generate both photometric and interferometric model observations for comparison with actual observations. The stellar properties of the best fitting model are then compared to the MESA evolution models to estimate an age and a mass.
To validate this physical model and the adopted MESA code, we first determine the ages of seven members of the Ursa Major moving group, which are expected to be coeval. With the exception of one star with questionable membership, these stars show a 1-σ spread in age of 56 Myr. This agreement validates our technique and provides a new estimate of the age for the group of 414 ± 23 Myr. We apply this validated technique to the directly-imaged `planet' host star κ Andromedae and determine its age to be 47+27-40 Myr. This implies the companion has a mass of 22+8-9 MJup and is thus more likely a brown dwarf than a giant planet. In total, we present new age and mass estimates for 55 nearby A-stars including six members of the Hyades open cluster, five stars with the λ Boötis chemical peculiarity, nine stars which have an infrared excess, possibly from a debris disk, and nine pulsating stars.
|
3 |
Runaway stars in the Galactic halo : their origin and kinematicsSilva, Manuel Duarte de Vasconcelos January 2012 (has links)
Star formation in the Milky Way is confined to star-forming regions (OB association, HII regions, and open clusters) in the Galactic plane. It is usually assumed that these regions are found preferably along spiral arms, as is observed in other spiral galaxies. However, young early-type stars are often found at high Galactic latitudes, far away from their birthplaces in the Galactic disc. These stars are called runaway stars, and it is believed that they were ejected from their birth- places early in their lifetimes by one of two mechanisms: ejection from a binary system following the destruction of the massive companion in a supernova type II event (the binary ejection mechanism), or ejection from a dense cluster following a close gravitational encounter between two close binaries (the dynamical ejection mechanism). The aims of our study were: to improve the current understanding of the nature of high Galactic latitude runaway stars, in particular by investigating whether the theoretical ejection mechanisms could explain the more extreme cases; to show the feasibility of using high Galactic latitude stars as tracers of the spiral arms. The main technique used in this investigation was the tracing of stellar orbits back in time, given their present positions and velocities in 3D space. This technique allowed the determination of the ejection velocities, flight times and birthplaces of a sample of runaway stars. In order to obtain reasonable velocity estimates several recent catalogues of proper motion data were used. We found that the evolutionary ages of the vast majority of runaway stars is consistent with the disc ejection scenario. However, we identified three outliers which would need flight times much larger then their estimated ages in order to reach their present positions in the sky. Moreover, the ejection velocity distribution appears to be bimodal, showing evidence for two populations of runaway stars: a “low” velocity population (89 per cent of the sample), with a maximum ejection velocity of about 300 kms−1, and a “high” velocity population, with ejection velo- cities of 400 – 500 kms−1. We argue that the observed bimodality and maximum ejection velocity of 500 kms−1 can be interpreted as a natural consequence of a variation of the binary ejection mechanism. A possible connection between the “high” velocity population and the so-called hypervelocity stars is also explored, resulting in the conclusion that some stars previously identified as hypervelocity may be in fact runaway stars. The feasibility of using stars as tracers of the spiral arms was tested on a local sample, in order to obtain better quality data and larger numbers. We found that the spiral arms pattern speeds estimated from this sample (24.9±5.2 kms−1 kpc−1) and from a selected sample of runaways (22.8 ± 7.8 kms−1 kpc−1) are consistent within the errors and also consistent with other published estimates. We concluded that our estimates combined with the ones obtained in other studies suggest a value in the range 20 − 25 kms−1 kpc−1 for the pattern speed. Moreover, we concluded that an adequate representation of the spiral arms is obtained given the former pattern speed estimate, even when applied to the sample of runaway stars.
|
4 |
The MiMeS Survey of Magnetism in Massive Stars: Introduction and OverviewWade, G. A., Neiner, C., Alecian, E., Grunhunt, H. H., Petit, V., Batz, B., Bohlender, D. A., Cohen, D. H., Henrichs, H. F., Kochukhov, O., Landstreet, J. D., Manset, N., Martins, F., Mathis, S., Oksala, M. E., Owocki, S. P., Rivinius, Th., Schultz, M. E., Sundqvist, J. O., Townsend, R. H.D., Doula, A., Bouret, J. C., Braithwaite, J., Briquet, M., Carciofi, A. C., David-Uraz, A., Folsom, C. P., Fullerton, A. W., Leroy, B., Marcolino, W. L.F., Moffat, A. F.J., Naze, Y., St Louis, N., Auriere, M., Bagnulo, S., Bailey, J. D., Barba, R. H., Blazere, A., Bohm, T., Catala, C., Donati, J-F, Ferrario, L., Harrington, D., Howarth, I. D., Ignace, Richard, Kaper, L., Luftinger, T., Prinja, R., Vink, J. S., Weiss, W. W., Yakunin, I. 11 December 2015 (has links)
The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada–France–Hawaii Telescope, Narval at the Télescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.
|
5 |
τ Sco: The Discovery of the ClonesPetit, Véronique, Massa, Derck L., Marcolino, Wagner L.F., Wade, Gregg A., Ignace, Richard 12 July 2011 (has links)
The B0.2 V magnetic star τ Sco stands out from the larger population of massive magnetic OB stars due to its remarkable, superionized wind, apparently related to its peculiar magnetic field - a field which is far more complex than the mostly-dipolar fields usually observed in magnetic OB stars. τ Sco is therefore a puzzling outlier in the larger picture of stellar magnetism - a star that still defies interpretation in terms of a physically coherent model. Recently, two early B-type stars were discovered as τ Sco analogues, identified by the striking similarity of their UV spectra to that of τ Sco, which was - until now - unique among OB stars. We present the recent detection of their magnetic fields by the MiMeS collaboration, reinforcing the connection between the presence of a magnetic field and a superionized wind. We will also present ongoing observational efforts undertaken to establish the precise magnetic topology, in order to provide additional constrains for existing models attempting to reproduce the unique wind structure of τ Sco-like stars.
|
6 |
Asymmetric Shapes of Radio Recombination Lines From Ionized Stellar WindsIgnace, R. 01 April 2019 (has links)
Recombination line profile shapes are derived for ionized spherical stellar winds at radio wavelengths. It is assumed that the wind is optically thick owing to free-free opacity. Emission lines of arbitrary optical depth are obtained assuming that the free-free photosphere forms in the outer, constant expansion portion of the wind. Previous works have derived analytic results for isothermal winds when the line and continuum source functions are equal. Here, semi-analytic results are derived for unequal source functions to reveal that line shapes can be asymmetric about line center. A parameter study is presented and applications discussed.
|
7 |
Coordinated UV and X-Ray Spectroscopic Observations of the O-type Giant ξ Per: The Connection between X-Rays and Large-scale Wind StructureMassa, Derck, Oskinova, Lida, Prinja, Raman, Ignace, Richard 01 January 2019 (has links)
We present new, contemporaneous Hubble Space Telescope STIS and XMM-Newton observations of the O7 III(n)((f)) star ξ Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of ξ Per. The variable wind of this star is known to have a 2.086-day periodicity. We use a simple, heuristic spot model that fits the low-velocity (near-surface) IUE wind line variability very well, to demonstrate that the low-velocity absorption in the new STIS spectra of N iv λ1718 and Si iv λ1402 vary with the same 2.086-day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 yr earlier. We also show that the time variability of the new XMM-Newton fluxes is also consistent with the 2.086-day period. Thus, our new, multiwavelength coordinated observations demonstrate that the mechanism that causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multiwavelength light-curve minima is Si iv λ1402, N iv λ1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086-day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Furthermore, the high-resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blueshifted. If we interpret the low-velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180°, on the surface of the star. We note that the presence and persistence of two spots separated by 180° suggest that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in ξ Per.
|
8 |
X-Ray Spectroscopy of Massive Stellar Winds: Previous and Ongoing Observations of the Hot Star ζ PupMiller, N., Waldron, W., Nichols, J., Huenemoerder, D., Dahmer, M., Ignace, R., Lauer, J., Moffat, A., Nazé, Y., Oskinova, L., Richardson, N., Ramiaramanantsoa, T., Shenar, T., Gayley, K. 01 January 2019 (has links)
The stellar winds of hot stars have an important impact on both stellar and galactic evolution, yet their structure and internal processes are not fully understood in detail. One of the best nearby laboratories for studying such massive stellar winds is the O4I(n)fp star ζ Pup. After briefly discussing existing X-ray observations from Chandra and XMM, we present a simulation of X-ray emission line profile measurements for the upcoming 840 kilosecond Chandra HETGS observation. This simulation indicates that the increased S/N of this new observation will allow several major steps forward in the understanding of massive stellar winds. By measuring X-ray emission line strengths and profiles, we should be able to differentiate between various stellar wind models and map the entire wind structure in temperature and density. This legacy X-ray spectrum of ζ Pup will be a useful benchmark for future X-ray missions.
|
9 |
Radio Variability From Corotating Interaction Regions Threading Wolf-Rayet WindsIgnace, Richard, St-Louis, Nicole, Prinja, Raman K. 01 September 2020 (has links)
The structured winds of single massive stars can be classified into two broad groups: stochastic structure and organized structure. While the former is typically identified with clumping, the latter is typically associated with rotational modulations, particularly the paradigm of corotating interaction regions (CIRs). While CIRs have been explored extensively in the ultraviolet band, and moderately in the X-ray and optical, here we evaluate radio variability from CIR structures assuming free-free opacity in a dense wind. Our goal is to conduct a broad parameter study to assess the observational feasibility, and to this end, we adopt a phenomenological model for a CIR that threads an otherwise spherical wind. We find that under reasonable assumptions, it is possible to obtain radio variability at the 10 per cent level. The detailed structure of the folded light curve depends not only on the curvature of the CIR, the density contrast of the CIR relative to the wind, and viewing inclination, but also on wavelength. Comparing light curves at different wavelengths, we find that the amplitude can change, that there can be phase shifts in the waveform, and the entire waveform itself can change. These characterstics could be exploited to detect the presence of CIRs in dense, hot winds.
|
10 |
Proper motions of five OB stars with candidate dusty bow shocks in the Carina NebulaKiminki, Megan M., Smith, Nathan, Reiter, Megan, Bally, John 06 1900 (has links)
We constrain the proper motions of five OB stars associated with candidate stellar wind bow shocks in the Carina Nebula using Hubble Space Telescope ACS imaging over 9-10 yr baselines. These proper motions allow us to directly compare each star's motion to the orientation of its candidate bow shock. Although these stars are saturated in our imaging, we assess their motion by the shifts required to minimize residuals in their airy rings. The results limit the direction of each star's motion to sectors less than 90 degrees wide. None of the five stars are moving away from the Carina Nebula's central clusters as runaway stars would be, confirming that a candidate bow shock is not necessarily indicative of a runaway star. Two of the five stars are moving tangentially relative to the orientation of their candidate bow shocks, both of which point at the OB cluster Trumpler 14. In these cases, the large-scale flow of the interstellar medium, powered by feedback from the cluster, appears to dominate over the motion of the star in producing the observed candidate bow shock. The remaining three stars all have some component of motion towards the central clusters, meaning that we cannot distinguish whether their candidate bow shocks are indicators of stellar motion, of the flow of ambient gas or of density gradients in their surroundings. In addition, these stars' lack of outward motion hints that the distributed massive-star population in Carina's South Pillars region formed in place, rather than migrating out from the association's central clusters.
|
Page generated in 0.0622 seconds