11 |
Neural network modelling for shear strength of concrete members reinforced with FRP barsBashir, Rizwan, Ashour, Ashraf 10 April 2012 (has links)
Yes / This paper investigates the feasibility of using artificial neural networks (NNs) to predict the shear capacity of concrete members reinforced longitudinally with fibre reinforced polymer (FRP) bars, and without any shear reinforcement. An experimental database of 138 test specimens failed in shear is created and used to train and test NNs as well as to assess the accuracy of three existing shear design methods. The created NN predicted to a high level of accuracy the shear capacity of FRP reinforced concrete members.
Garson index was employed to identify the relative importance of the influencing parameters on the shear capacity based on the trained NNs weightings. A parametric analysis was also conducted using the trained NN to establish the trend of the main influencing variables on the shear capacity. Many of the assumptions made by the shear design methods are predicted by the NN developed; however, few are inconsistent with the NN predictions.
|
12 |
Propriedades estatísticas do ruído barkhausen em materiais magnéticos artificialmente estruturados / Barkhausen noise statistical properties in artificially structured magnetic materialsBohn, Felipe 13 March 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Barkhausen noise (BN) corresponds to the voltage pulses induced in a sensing coil wound around a ferromagnetic material submitted to a variable magnetic field. It is related to the irregular motion of the domain walls (DWs) in a disordered magnetic material. Due to its stochastic
character, most of the studies aim to explain the BN statistical properties. The statistical functions
are, in general, well described by a power-law behavior with cutoff, whose exponents and cutoffs can be compared with the predictions obtained with theoretical models. Interestingly, statistical properties seem to be independent of microscopic and macroscopic details but
controlled by a few general properties, as the system dimensionality and range of the relevant interactions governing the DWs dynamics. For bulk materials, there is a well established and consistent interpretation for the BN statistical properties, including the distributions of jump
sizes and durations, average size vs. duration and power spectrum, which are related to the exponents t, a, 1=(snz) and J, respectively. In this case, the results clearly indicate that bulk samples present an essentially three-dimensional magnetic behavior and the exponents can be
grouped in two distinct universality classes, according the range of interactions governing the DWs dynamics. For ferromagnetic films, the statistical properties are not so well studied due to experimental and theoretical difficulties and most of the experimental results reported so far make use of magneto-optical techniques, which restrict the analysis to the distributions of sizes.
In all cases, the reported exponents for films are smaller than that obtained for bulk samples, indicating a possible two-dimensional magnetic behavior. Due to the insufficient amount of experimental data, the structural character and film thickness influence on the exponents was not observed and a complete comprehension of the DWs dynamics in films is still lacking. In this work, we report BN experimental results obtained with the classical inductive method
in policrystalline and amorphous ferromagnetic films with thickness in the range 10 - 1000 nm. We investigate the BN statistical properties in order to understand the effects of the interplay between the system dimensionality and the range of the relevant interactions governing the DWs
and magnetization dynamics. In particular, we perform an extended statistical analysis which includes the distributions of jump sizes and durations, average size vs. duration curve, power spectrum and the average shape of the Barkhausen jump, reported for the first time for films. The results show evidence of a three to two-dimensional crossover in the DWs dynamics as the film thickness is decreased. Also, the effect of the range of interactions governing the DWs dynamics in this range of thickness is observed, indicating the same two distinct universality classes observed for bulk materials. Through these results, we provide experimental evidence to the validity of different three and two-dimensional heoretical models for DWs dynamics. / O ruído Barkhausen (BN) corresponde aos pulsos de tensão detectados por uma bobina sensora enrolada em torno de um material ferromagnético, quando submetido a um campo magnético variável. O ruído é produzido por mudanças súbitas da magnetização, principalmente devido ao movimento irregular das paredes de domínio (DWs) em um meio magnético desordenado. Devido ao seu caráter estocástico, grande parte dos estudos visa explicar as propriedades estatísticas
do ruído. As funções estatísticas são, em geral, bem descritas por leis de potência com cutoff , cujos expoentes e valores de cutoff podem ser comparados com valores obtidos teoricamente. Como ponto interessante, as propriedades estatísticas parecem ser independentes dos detalhes microscópicos e macroscópicos, sendo dependentes de apenas algumas propriedades gerais, como a dimensionalidade do sistema e o alcance das interações que governam a dinâmica de DWs. Para materiais bulk , há uma interpretação robusta e bem estabelecida para as propriedades estatísticas do ruído, incluindo as distribuições de área e duração dos saltos, área média do salto vs. duração e espectro de potência, que estão relacionados com os expoentes
t, a, 1=(snz) e J, respectivamente. Neste caso, os resultados claramente indicam que amostras bulk apresentam um comportamento magnético essencialmente tri-dimensional e que os expoentes podem ser agrupados em duas classes de universalidade distintas, de acordo com o alcance das interações que governam a dinâmica de DWs. Para filmes ferromagnéticos, as propriedades estatísticas não são tão bem estudadas devido a dificuldades teóricas e experimentais
e devido ao fato de que a maioria dos resultados experimentais publicados até o momento, obtidos através de técnicas magneto-ópticas, restringem a análise apenas à distribuição de área dos saltos. Em todos os casos, os expoentes obtidos para filmes são menores do que os obtidos
para amostras bulk , indicando um possível comportamento magnético bi-dimensional. No entanto, devido à insuficiente quantidade de dados experimentais, a influência da espessura do filme e do caráter estrutural sobre os expoentes ainda não foi observada e uma compreensão completa da dinâmica de DWs em filmes ainda não foi obtida. Neste trabalho, são apresentados resultados experimentais de BN obtidos, através do tradicional método indutivo, em filmes ferromagnéticos policristalinos e amorfos, com espessuras no intervalo de 10 - 1000 nm. Neste caso, as propriedades estatísticas do ruído são investigadas com o objetivo de compreender os efeitos da dimensionalidade do sistema e do alcance das interações sobre os expoentes e sobre a dinâmica de DWs em filmes. Em particular, foi realizada uma vasta e sistemática análise estatística, envolvendo distribuições de amplitude, área e
duração dos saltos, área média do salto vs. duração, espectro de potência e a forma média do salto Barkhausen, pela primeira vez obtida para filmes. Os resultados mostram evidências experimentais de um crossover dimensional da dinâmica de DWs à medida que a espessura do filmes é reduzida. Também, o efeito do alcance das interações sobre a dinâmica de DWs em filmes é observado, indicando a existência das mesmas duas classes de universalidade observadas para materiais bulk . Deste modo, os expoentes
medidos fornecem evidências experimentais para a validade de diferentes modelos tri e bi-dimensionais para a dinâmica de DWs.
|
13 |
Some Studies of Statistical Properties of Turbulence in Plasmas and FluidsBanerjee, Debarghya January 2014 (has links) (PDF)
Turbulence is ubiquitous in the flows of fluids and plasmas. This thesis is devoted to studies of the statistical properties of turbulence in the three-dimensional (3D) Hall magnetohydrodynamic (Hall-MHD) equations, the two-dimensional (2D) MHD equations, the one-dimensional (1D) hyperviscous Burgers equation, and the 3D Navier-Stokes equations. Chapter 1 contains a brief introduction to statistically homogeneous and isotropic turbulence. This is followed by an over-view of the equations we study in the subsequent chapters, the motivation for the studies and a summary of problems we investigate in chapters 2-6.
In Chapter 2 we present our study of Hall-MHD turbulence [1]. We show that a shell-model version of the 3D Hall-MHD equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-k and high-k power-law ranges of 3D Hall-MHD, and find that the extended-self-similarity procedure is helpful in extracting the multiscaling nature of structure functions in the high-k regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements.
In Chapter 3 we present our study of the inverse-cascade regime in two-dimensional magnetohydrodynamic turbulence [2]. We present a detailed direct numerical simulation (DNS) of statistically steady, homogeneous, isotropic, two-dimensional magnetohydrodynamic (2D MHD) turbulence. Our study concentrates on the inverse cascade of the magnetic vector potential. We examine the dependence of the statistical properties of such turbulence on dissipation and friction coefficients. We extend earlier work significantly by calculating fluid and magnetic spectra, probability distribution functions (PDFs) of the velocity, magnetic, vorticity, current, stream-function, and magnetic-vector-potential fields and their increments. We quantify the deviations of these PDFs from Gaussian ones by computing their flatnesses and hyperflatnesses. We also present PDFs of the Okubo-Weiss parameter, which distinguishes between vortical and extensional flow regions, and its magnetic analog. We show that the hyperflatnesses of PDFs of the increments of the stream-function and the magnetic vector potential exhibit significant scale dependence and we examine the implication of this for the multiscaling of structure functions. We compare our results with those of earlier studies.
In Chapter 4 we compare the statistical properties of 2D MHD turbulence for two different energy injection scales. We present systematic DNSs of statistically steady 2D MHD turbulence. Our two DNSs are distinguished by kinj, the wave number at which we inject energy into the system. In our first DNS (run R1), kinj = 2 and, in the second (run R2) kinj = 250. We show that various statistical properties of the turbulent states in the runs R1 and R2 are strikingly different The nature of energy spectrum, probability distribution functions, and topological structures are compared for the two runs R1 and R2 are found to be strikingly different.
In Chapter 5 we study the hyperviscous Burgers equation for very high α, order of hyperviscosity [3]. We show, by using direct numerical simulations and theory, how, by increasing α in equations of hydrodynamics, there is a transition from a dissipative to a conservative system. This remarkable result, already conjectured for the asymptotic case α →∞ [U. Frisch et al., Phys. Rev. Lett. 101, 144501 (2008)], is now shown to be true for any large, but finite, value of α greater than a crossover value α crossover. We thus provide a self-consistent picture of how dissipative systems, under certain conditions, start behaving like conservative systems, and hence elucidate the subtle connection between equilibrium statistical mechanics and out-of-equilibrium turbulent flows.
In Chapter 6 we show how to use asymptotic-extrapolation and Richardson extrapolation methods to extract the exponents ξ p that characterize the dependence of the order-p moments of the velocity gradients on the Reynolds number Re. To use these extrapolation methods we must have high-precision data for such moments. We obtain these high-precision data by carrying out the most extensive, quadruple precision, pseudospectral DNSs of the Navier-Stokes equation.
|
Page generated in 0.093 seconds