• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 21
  • 18
  • 12
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Genetic polymorphisms in the stearoyl-CoA desaturase1 (SCD1) gene and their influence on the conjugated linoleic acid (CLA) and monounsaturated fatty acids (MUFA) content of milk fat of Canadian Holstein and Jersey cows

Kgwatalala, Patrick M., 1973- January 2008 (has links)
No description available.
22

Intestinal Gene Expression Profiling and Fatty Acid Responses to a High-fat Diet

Cedernaes, Jonathan January 2013 (has links)
The gastrointestinal tract (GIT) regulates nutrient uptake, secretes hormones and has a crucial gut flora and enteric nervous system. Of relevance for these functions are the G protein-coupled receptors (GPCRs) and the solute carriers (SLCs). The Adhesion GPCR subfamily is known to mediate neural development and immune system functioning, whereas SLCs transport e.g. amino acids, fatty acids (FAs) and drugs over membranes. We aimed to comprehensively characterize Adhesion GPCR and SLC gene expression along the rat GIT. Using qPCR we measured expression of 78 SLCs as well as all 30 Adhesion GPCRs in a twelve-segment GIT model. 21 of the Adhesion GPCRs had a widespread (≥5 segments) or ubiquitous (≥11 segments) expression. Restricted expression patterns were characteristic for most group VII members. Of the SLCs, we found the majority (56 %) of these transcripts to be expressed in all GIT segments. SLCs were predominantly found in the absorption-responsible gut regions. Both Adhesion GPCRs and SLCs were widely expressed in the rat GIT, suggesting important roles. The distribution of Adhesion GPCRs defines them as a potential pharmacological target. FAs constitute an important energy source and have been implicated in the worldwide obesity increase. FAs and their ratios – indices for activities of e.g. the desaturase enzymes SCD-1 (SCD-16, 16:1n-7/16:0), D6D (18:3n-6/18:2n-6) and D5D (20:4n-6/20:3n-6) – have been associated with e.g. overall mortality and BMI. We examined whether differences in FAs and their indices in five lipid fractions contributed to obesity susceptibility in rats fed a high fat diet (HFD), and the associations of desaturase indices between lipid fractions in animals on different diets. We found that on a HFD, obesity-prone (OP) rats had a higher SCD-16 index and a lower linoleic acid (LA) proportions in subcutaneous adipose tissue (SAT) than obesity-resistant rats. Desaturase indices were significantly correlated between many of the lipid fractions. The higher SCD-16 may indicate higher SCD-1 activity in SAT in OP rats, and combined with lower LA proportions may provide novel insights into HFD-induced obesity. The associations between desaturase indices show that plasma measurements can serve as proxies for some lipid fractions, but the correlations seem to be affected by diet and weight gain.
23

Dietary Fatty Acids and Inflammation : Observational and Interventional Studies

Bjermo, Helena January 2011 (has links)
Dietary fat quality influences the risk of type 2 diabetes and cardiovascular disease. A low-grade inflammation is suggested to contribute to the disease development, often accompanied by obesity. Whereas n-3 polyunsaturated fatty acids (PUFA) have been considered anti-inflammatory, n-6 PUFA have been proposed to act pro-inflammatory. Saturated fatty acids (SFA) act pro-inflammatory in vitro. This thesis aimed to investigate effects of different fatty acids on low-grade inflammation in observational and interventional studies. In Paper I and II, fatty acid composition in serum cholesterol esters was used as objective marker of dietary fat quality and related to serum C-reactive protein (CRP) and other circulating inflammatory markers in two population-based cohorts, conducted in middle-aged men and elderly men and women, respectively. In Paper III and IV, the impact of diets differing in fat quality on inflammation and oxidative stress was investigated in randomised controlled studies, in subjects with metabolic syndrome and abdominal obesity. In Paper I and II, a low proportion of linoleic acid (18:2 n-6) in serum was associated with higher CRP concentrations, indicating that a low intake of vegetable fats may be related to low-grade inflammation. High CRP concentrations were also associated with high proportions of palmitoleic (16:1) and oleic (18:1) acids and high stearoyl coenzymeA desaturase index, possibly reflecting altered fat metabolism and/or high SFA intake in this population. When comparing two high-fat diets rich in either saturated or monounsaturated fat, and two low-fat diets with or without long-chain n-3 PUFA supplementation during 12 weeks (Paper III), no differences in inflammation or oxidative stress markers were observed. Moreover, a 10-week intervention (Paper IV) with high linoleic acid intake showed no adverse effects on inflammation or oxidative stress. Instead, interleukin-1 receptor antagonist and tumor necrosis factor receptor-2 decreased after linoleic acid intake compared with a diet high in SFA. The results in this thesis indicate that dietary n-6 PUFA found in vegetable fats is associated with lower inflammation marker levels, and to some extent reduces systemic inflammation when compared with SFA. Supplementation of n-3 PUFA did not exert any systemic anti-inflammatory effects, maybe due to a relatively low dose.

Page generated in 0.0339 seconds