Spelling suggestions: "subject:"steel embracing""
1 |
Strengthening Of Reinforced Concrete Frames By Using Steel BracingsAgar, Mehmet 01 July 2008 (has links) (PDF)
Structures in high seismic risk areas may be susceptible to severe damage in a major earthquake. Structures designed to meet older code requirements may be at even greater risk. When these structures are evaluated with respect to current code criteria, it is observed that they lack of lateral strength and/or ductility. Since safety and economic considerations are major problems, these structures become viable candidates for retrofit and seismic strengthening.
For the variety of structures and possible deficiencies that arise, several retrofitting techniques can be considered. Diagonal bracing system is one of the retrofitting techniques and it provides an excellent approach for strengthening and stiffening existing building for lateral forces. Also, another potential advantage of this system is the comparatively small increase in mass associated with the retrofitting scheme since this is a great problem for several retrofitting techniques.
In this study, the use of steel bracing for the strengthening of low, intermediate, and relatively high rise reinforced concrete frames are investigated analytically. The ultimate lateral load capacities of the strengthened frames are determined by a load controlled push-over analysis. The post-tensioning effect of preloading is also investigated.
|
2 |
Cyclic response of hollow and concrete-filled circular hollow section bracesSheehan, Therese, Chan, T.M. January 2014 (has links)
yes / The behaviour of seismic-resistant buildings relies heavily upon the inclusion of energy dissipating devices. For concentrically-braced frames, this function is accomplished by diagonal bracing members whose performance depends upon both cross-sectional properties and global slenderness. Traditionally preferred rectangular hollow sections are susceptible to local buckling, particularly in cold-formed tubes, owing to the residual stresses from manufacture. This paper explores the response of hollow and concrete-filled circular tubes under cyclic axial loading. The uniformity of the circular cross-section provides superior structural efficiency over rectangular sections and can be further optimised by the inclusion of concrete infill. A series of experiments was conducted on filled and hollow specimens to assess the merit of the composite section. Comparisons were drawn between hot-finished and cold-formed sections to establish the influence of fabrication on member performance. Two specimen lengths were utilised to assess the influence of non-dimensional slenderness. Parameters such as ductility, energy dissipation, tensile strength and compressive resistance are presented and compared with design codes and empirically derived predictions.
|
3 |
Seismic evaluation and retrofitting of an existing building in Athens using pushover analysisLazaris, Angelos January 2019 (has links)
Earthquakes are one of the biggest problems in civil engineering all over the world. Due to earthquakes, great disasters in cities with collapsed structures and human losses have been caused. More specific, old buildings that have been built based on old regulations and design building codes do not fulfil anymore the new criteria of seismic designing.In this study, an old building has been evaluated for the seismic load in order to decide if there is a need for strengthening it using retrofitting methods. The seismic evaluation is based on Eurocode 8 and after the application of retrofitting techniques the building fulfilled its seismic design criteria. The existing building is a four-storey, concrete structure that has been built in 1970 and is located in Athens (the capital city of Greece). The seismic evaluation is conducted by using the software Seismostruct.Two analyses are performed in order to evaluate the seismic behavior of the building. First, an eigenvalue analysis is conducted before and after retrofitting. By using this analysis the torsional sensitivity of the building has been checked. Then, using pushover analysis, the comparison of the target displacement (expected displacement of the building for the design seismic action) for each limit state and the displacement of the building when the first member of the building reached the corresponding limit state, is presented. Target displacement must not be greater than this displacement in order to ensure the safety of the building. If the comparison shows that target displacement is greater, the weak links in the facility should be identified and the proper retrofitting method should be applied for the improvement of the seismic behavior of the building. Pushover analysis is conducted before and after the application of retrofitting methods.After performing the eigenvalue and pushover analysis of the existing building it was found that the building was torsional sensitive and shear failures occurred in many beams of the structure. Regarding the bending failures, the target displacement was not greater than the displacement of the building when the first member of the building reached any of the corresponding limit states. Therefore the building was safe against bending failures. With the application of X-shaped steel braces in selected frames, the building had higher stiffness and it was not torsional sensitive but shear failures occurred again in many beams. Furthermore, compressive failures occurred in columns that were connected with the steel braces. Finally, with the application of fibre reinforced plastic jacketing in the members that failed in the previous pushover analysis there were no shear or compressive failures. Finally the structure was safe against seismic actions.The application of retrofitting methods improved the seismic behavior of the building and the structure fulfilled the updated regulations of Eurocode 8 regarding seismic design. This project thesis may give rise to further studies and researches concerning seismic retrofitting and seismic damage prevention.
|
4 |
Seismic analysis and retrofitting of an existing multi-storey building in StockholmMuca, Matilda, Haikal, Celine January 2018 (has links)
Throughout the years earthquakes are a huge concern for structures; causing losses of peoples’ lives, damages and collapse of homes. Usually, most of the buildings that collapse or have serious damages are mostly old buildings that do not fulfil any longer the updated regulations and building codes concerning seismic design. The purpose of this Master’s thesis is to analyse and strengthen an existing building given by the company Sweco, by using proper and innovative retrofitting techniques; considering Eurocode 8 and collected data from previous studies. The selected building is a seven-storey structure in Stockholm; consists of prefabricated concrete and steel elements and is tested under seismic loading to investigate the global behaviour of the structure using the software MIDAS GEN. Two analyses are performed; assessment analysis which includes modelling of the given structure where the structural capacities are studied. The second analysis is the seismic analysis which includes two secondary analyses; before seismic retrofitting and after seismic retrofitting respectively. In the seismic analysis before the seismic retrofitting is applied, the main scope is to identify the most critical positions of the building where it behaves abnormally and the displacements are high enough in order to modify the structure to decrease displacements. Moreover, the frequencies were obtained and examined. The second seismic analysis includes the modified structure; where it was tested with different alternative methods of seismic retrofitting in order to identify which technique is the most proper one to optimise the strength and the structural performance of the given building. Finally, it appeared that a combination of seismic retrofitting methodologies was the most suitable selection. The selected combination consists of steel bracings and prefabricated reinforced concrete walls (shear walls). After performing the seismic retrofitting analysis, results of the frequencies and displacements of the structure were acquired and compared with the un-retrofitted analysis. The obtained results displayed that using this structural modification improved by increasing the frequency in the transverse direction (y) by 57.2%, in the longitudinal direction (x) by 27.6% and rotational along the z-axis by 12.9%; lastly, by decreasing the displacements in the x- and y-direction remarkably. Consequently, a combination of innovative seismic retrofitting methods appeared to be more effective, achieving a more resistant building under seismic hazards, by improving the stability and ductility of the structure. This gives rise to further researches and investigations for future solutions regarding seismic retrofitting applications and methodologies. / Jordbävningar är skakningar i marken som orsakar förluster av människors liv och leder till skador och kollaps av byggnader. Vanligtvis är de flesta byggnader som har allvarligt skadats eller kollapsat, äldre byggnader som inte längre uppfyller de uppdaterade byggreglerna för seismisk design. Syftet med detta examensarbete är att analysera och stärka en befintlig byggnad som har distribuerats av konsult företaget Sweco; lämpliga och innovativa seismisk eftermonteringsmetoder har använts för att förbättra byggnadens tillstånd med hjälp av insamlat vetenskapliga artiklar, tidskrifter och tidigare examensarbete samt svensk standard (Eurokod 8 - för dimensionering av bärverk med avseende på jordbävning). Den utdelade byggnaden är sju våningar hög och ligger i Stockholm. Den består av prefabricerade betong- och stålelement. Byggnaden kommer att testas under seismisk belastning med hjälp av programvaran MIDAS GEN, för att sedan examinera byggnadens globala beteende. Två analyser har utförts; en bedömningsanalys som innefattar granskning av den givna byggnadens kapacitet. Den andra analysen är den seismiska analysen som omfattar två sekundära analyser; en ’före applikation av seismisk eftermonteringsmetod’ och en ’efter applikation av seismisk eftermonteringsmetod’. I den första seismiska analysen, identifieras de mest kritiska positionerna där byggnadens beteende är avvikande med höga förskjutningar och låga frekvenser; således, är behovet av att modifiera och förbättra byggnadens prestanda betydande. Den andra seismiska analysen innefattar den modifierade byggnaden, som har testats med olika alternativa seismiska eftermonteringsmetoder för att identifiera vilken teknik som är mest passande för att optimera byggnadens hållfasthet, elasticitet och prestanda. Efter många experimentella försök, framgick det att en kombination av varierande seismiska eftermonteringsmetoder var det mest lämpliga urvalet. Den valda kombinationen består av stålfackverk och skjuvväggar. Efter genomförandet av den seismiska eftermonteringsanalysen erhölls resultat av frekvensen och förskjutningarna av byggnaden som sedan jämfördes med den första seismiska analysen, innan en eftermonteringsmetod var tillämpad. De erhållna resultaten visade att valet av denna modifikation har förbättrat byggnadens prestanda genom att öka frekvensen i tvärriktningen (y) med 57,2%, i längdriktningen (x) med 27.6% och rotationsfrekvensen längs z-axeln med 12.9%; slutligen, genom att minska förskjutningarna i x- och y-riktningen anmärkningsvärt. Följaktligen, verkade en kombination av varierande seismiska eftermonteringsmetoder vara effektiv, vilket resulterade i en seismisk resistent byggnad med avsevärt god hållfasthet, elasticitet och stabilitet. Denna forskning ger upphov till ytterligare efterforskningar och undersökningar för framtida lösningar avseende seismiska eftermonteringsapplikationer och metoder.
|
Page generated in 0.0802 seconds