51 |
The influence of tempering on the corrosion resistance of newly developed steelsJoubert, K J January 1989 (has links)
Bibliography: pages 105-113. / This thesis deals with the effect of heat treatment on the localized corrosion resistance of the low carbon, chromium containing steels, designated 825, 102A and 122 which recently have been developed. The potentiodynamic polarization technique has been employed to determine the corrosion characteristics of the three steels. The results do not accurately reflect the effect heat treatment has on corrosion rates but scanning electron microscopy of corroded surfaces does allow a characterization. Both tempering temperature and time at temperature have a significant influence on the corrosion behaviour of chromium steels because the type, size and morphology of carbide precipitates are determined by the temperature and time of temperi ng. Localized pitting corrosion predominates for specimens tempered at temperatures below 450°C. Intergranular corrosion together with general corrosion occur after tempering at temperatures. in excess of 450°C. The resul ts of hardness tests show that secondary hardeni ng occurs after tempering between 450°C and 600°C. Secondary hardening suggests the presence of chromium carbides which deplete the surrounding matrix of chromium leaving it susceptible to active general corrosion (within the grains) and intergranular corrosion (at grain boundaries). A model showing the effect that 12% chromium, in comparison to 8% chromium, has on the corrosion resistance, is proposed. The significance of these results with regard to the application of the steels is discussed.
|
52 |
Korozní odolnost litých duplexních ocelí / Corrosion resistance of cast duplex stainless steelsMüller, Peter January 2020 (has links)
The master’s thesis deals with corrosion resistance of cast duplex steels. In the first part the corrosion mechanisms and their individual types are described, the second part characterizes the types of stainless steels in terms of their properties, use, structural components, and their impact on mechanical and corrosion properties of steels. Individual chapter is dedicated to duplex steels. In the experimental part the resistance of 1.4517 steel against pitting corrosion depending on the alloy contents and the PREN value was investigated. Four specimens graded according to PREN were cast. Supplemented with sample stirrer blade which was affected by corrosion during service they were subjected to corrosion test according to ASTM G48-11 standard in 6% FeCl3 solution. Cast specimens were subjected to tensile test and impact test.
|
53 |
The influence of water composition on the pitting behaviour of newly developed corrosion resistant steelsCotterrell, M H January 1988 (has links)
Bibliography: pages 96-103. / The mechanisation of the working stapes in South African gold mines has required the introduction of a fundamentally new technology, hydro-power, in which machines are powered hydraulically using mine water fed from above ground. Mine water is aggressive and has a variable acidity and pH, and contains high concentrations of sulphate, chloride and nitrate ions. In order to minimise the pitting corrosion of piping and stoping machinery a compromise between selecting a suitable corrosion resistant material and treating the mine water to an acceptable level of corrosiveness is being sought.
|
54 |
Optimalizace posuzování životnosti ocelových stožárů / Optimization Of Methodology For Durability Assessment Of Steel PylonsČada, Pavel Unknown Date (has links)
In this thesis the corrosion resistance of two types of steel materials were evaluated, Corten A as a representative of WS (weathering steel) and the corrosion resistance of anti-corrosion protection formed by the zinc coating. The different kinetics of corrosive processes was found during the NSS test. WS steel exposed to 400 hours of NSS laboratory test showed growth of the corrosion rate, however, after this period of time there has been a significant decline in this rate. Conversely, when using Zn as anodic protection, the corrosion losses decrease linear up to 300 hours of exposure, but after this time there was a relatively significant linear increase in corrosion rate. During measurements on existing VHV pylons they were measured corrosion decreases of steel and Zn anti-corrosion protection. Normal corrosion rate for weathering steel with 10 m.a-1 and for Zn corrosion loss 1.8 m.a-1 were found. Technical and economic assessment were evaluated using variant of new poles with Zn surface layer and revitalization of existing pylons from WS steel. With regard to all aspects obtained from laboratory tests and economic assessments, friendlier version of revitalization of existing VHV pylons from WS steel using a sufficient corrosion resistance of these steels were found out.
|
55 |
Corrosion characteristics of steels and metallic alloys used as construction materials in plants exposed to fluorine containing acids / Corrosion characteristics of metallic alloys and steels used as construction materials in plants exposed to fluorine containing acidsVan der Merwe, Ryno January 2018 (has links)
A dissertation submitted in fulfilment of the requirement for the degree of Master of Science in Engineering, to the Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2018 / The two hydrofluoric acid (HF) storage tanks used for holding 70% technical grade HF product at the HF plant at Necsa started leaking in March 2012. An evaluation of the failure was conducted in the form of a corrosion failure analysis. It was confirmed that a higher than usual nitric acid (HNO3) content in the technical grade HF stream changed the corrosion mechanisms typically experienced within the HF storage vessels, which then caused the tanks to fail.
Immersion type corrosion experiments were done to safely simulate the corrosive environment experienced by the mild steel, stainless steel and nickel alloys used on site, and to predict the change in corrosion rates and characteristics associated with the HNO3 contamination in the HF production plant circuit. Since the corrosion resistance of mild steel in HF is heavily dependent on the thickness of the protective scale on the steel, a series of planned interval corrosion tests (PICTs) was done to reproduce and then examine the oxidefluoride barrier on mild steel coupons in pure 70% HF prior to corrosion tests. These shorter PICTs were also done on the stainless steel and nickel alloys and showed that the prepassivation step had a surface cleaning effect when exposed for only 24 h.
Eleven day corrosion tests were conducted to establish the effect of HNO3 concentration and temperature on mild steel corrosion in 70% HF, and to determine the change in corrosion rates and mechanisms associated with HNO3 contamination (0.1-1% HNO3) of the downstream HF products. The corrosion was characterized by analysing the corroded coupons for mass loss, apparent corrosion rates, acid consumptions, visual observations of scale formation and pits, as well as depth profiles from scanning electron microscopy and energy dispersive spectroscopy analyses. Linear relationships were frequently observed when analysing mass losses for the coupons over time, making it possible to define corrosion rates in terms of first order reaction kinetics. The harshest corrosive condition for mild steel in HF was determined to be 1% HNO3 in 70% HF at a constant temperature of 25ºC.
The corrosion characteristics of alloys used in the HF plant, as affected by HNO3 impurities (in the range 50–10000 ppm) in the final HF acid product (70% Technical grade) were successfully established. Normalized SA516 Grade 70 mild steel and Monel 400 were found not adequate for use as construction materials in a plant where HNO3 contamination was >100 ppm. However, the corrosion resistance of SS 904 L was suitable under these
conditions and was recommended for applications in HF solutions where the presence of an oxygen-containing acid (e.g. HNO3) is consistent.
It was recommended that Alloy 31, Alloy 33 or Nirosta 4565S, with higher chromium content (>20 wt% Cr), should be considered for construction material of the HF plant when HNO3 contamination becomes unavoidable. However, if the continued use of mild steel at the plant cannot be avoided, other inhibition strategies tailored to the selective consumption of HNO3 in the HF product stream need to be investigated. / XL2019
|
56 |
RESIDUAL STRENGTH OF STEEL COUPONS AND PLATES SUBJECTED TO CORROSION DAMAGEPawar, Umang 06 June 2018 (has links)
No description available.
|
57 |
Chemical treatment of corroding steel reinforcement after removal of chloride contaminated concreteCollins, William D. 18 August 2009 (has links)
The increasing use of deicing salts has caused the accelerated deterioration of bridge decks due to cracking and spalling from chloride induced corrosion of steel reinforcement. One method being considered as a possible corrosion abatement measure is the removal of chloride contaminated concrete and the chemical treatment of the partially exposed rebar through ponding and/or placement of chemically treated mortar.
Reinforced concrete specimens were cast and subjected to repeated exposure to NaCl solution. Half-cell potential, corrosion rate, and chloride ion concentration measurements were conducted until the indication of active reinforcement corrosion. Chloride contaminated concrete was removed to the rebar level through a grooving process. The grooves were chemically treated through solution pondings and backfilling with treated mortar. Seventeen treatments and combination of treatments were evaluated including corrosion inhibitors, polymer sealers, and a possible chloride ion scavenging mineral. The treatment effects were monitored using half-cell potential and corrosion rate measurements. In addition, mortar cubes were cast containing various treatment concentrations and were subsequently tested for compressive strength and change in resistivity over time.
Based on the electrochemical and mortar cube measurements, DCI (calcium nitrite) when applied as a ponding and mortar treatment, was determined most effective in abating corrosion after concrete removal. In addition, Alox 901, Cortec 1337, Cortec 1609, sodium tetraborate, and Zinc borate were also found effective in mitigating rebar corrosion after concrete removal; however, both the borate compounds cause set retardation of portland cement. These chemicals were recommended as candidate treatments for further evaluation in both large-scale and field experimentation. / Master of Science
|
58 |
The effect of certain nitrogen-containing organic compounds on the corrosion of steel in phosphoric acidNickel, George W January 1949 (has links)
From the results obtained in this investigation, the following conclusions can be drawn:
1. A substance inhibits corrosion only under certain conditions, and under other conditions it may not be an inhibitor, but may be inert or an accelerator.
2. No compounds tested in concentrations of 0.01 and 0.10 percent nitrogen, were found to inhibit the corrosion of steel in 5 percent phosphoric acid at 25°C. and under the conditions of aeration and agitation used.
3. Sodium chromate is an inhibitor in concentrations of 1 percent for the corrosion of steel by a 5 percent, aerated, agitated, phosphoric acid solution at 25°C.
4. The mechanism of the corrosion of copper proposed by Whaley is not substantiated. Chelation probably is not the mechanism by which 2-nitro-l-butanol inhibits the corrosion of copper in a 5 percent phosphoric acid solution.
5. Inhibitors that are used and are efficient for one acid under certain conditions cannot always be said to work for other acids under other conditions. / M.S.
|
59 |
Inhibition of mild steel corrosion in cooling systems by low- and non-toxic corrosion inhibitorsAhmed, Mohamed January 2017 (has links)
The aim of the research in this thesis was to study how environmentally friendly corrosion inhibitors for cooling water systems might be developed and used. Firstly, reduced toxicity inorganic corrosion inhibitors (i.e. nitrite/molybdate) were considered. Secondly, non-toxic inhibitors based on mono and di-basic salts of carboxylic acids were studied systematically as a function of carbon chain length. For nitrite inhibitor alone, a concentration of 7 mM NaNO2 was effective to inhibit carbon steel in chloride media of 10 mM NaCl, while 10 mM nitrite was needed in sulphate media of 3.66 mM Na2SO4. However, it was found possible to significantly reduce the concentration of nitrite by adding molybdate in synergy. This was attributed to the nitrite passivation combined with ferrous molybdate salt film pore plugging thus promoting a continuous and protective film on the material within these media. Thus, in pH 6-10 an inhibition efficiency of 97% was recorded with a mixture of 3 mM nitrite/2 mM molybdate in both chloride and sulphate media and at 25°C and 60°C. However as the solution pH decreased below pH 4 the inhibition efficiency decreased to about 47%.In the second part of the study, the use of sodium salts of carboxylic acids with different chain lengths has been investigated. In this part a summary of the performances and limitations of both mono- and di-sodium carboxylate inhibitors are presented. For mono-carboxylates, the inhibition efficiency reached a maximum value of 95% in stagnant aerated solutions at a chain length of C=4 with a critical inhibition concentration of 6 mM in 10 mM NaCl solution. However the inhibition efficiency gradually decreased as the number of carbon atoms in the chain length increased to more than 8, or less than 4, and this was in agreement with surface hydrophobicity and contact angle results. For lower chain lengths, the carboxylate anion becomes more acidic and complexing of the metal ion while for longer chain lengths, the carboxylate anion becomes less soluble and tends to micellise wherby the active groups are no longer available for surface adsorption. For di-carboxylates the inhibition efficiency improved in 10 mM NaCl at a given chain length compared with mono-carboxylates, and continued to increase to C=8 (sebacate), which achieved excellent inhibition efficiency. However, sebacate is costly so a blend with ethyl hexanoate was found to be economically favoured.
|
60 |
Modeling Corrosion in Suspension Bridge Main CablesKaranci, Efe January 2017 (has links)
Accurately determining the current state of a suspension bridge’s main cables is a critical component to reliably assessing the safety of the bridge. The primary cause for the deterioration of cable strength with time is universally recognized to be the corrosion of high strength steel wires, which together comprise the main cable. Hidden from view by the cable wrapping, this corrosion often goes undetected for years and is typically only discovered during costly and intrusive inspections. Furthermore, current inspection methods provide an incomplete picture of the variation in wire condition across the cable cross section. As a result, cable strength estimation techniques that rely solely on inspection data introduce a considerable degree of uncertainty. Finally, a method has not been developed for estimating the continuing decline in cable strength due to ongoing corrosion. A recent direction in research attempts to address the shortcomings of current inspection methodologies and the intent of this thesis is to further build upon these findings.
In these recent studies, environmental conditions inside main cables are monitored to obtain information regarding the corrosive nature of the cable’s internal environment. The first goal of this thesis is to further this research direction by introducing a corrosion rate model for bridge wires that relates the monitored environmental parameters within a cable to the corrosion rate of bridge wires. Initially, temperature, relative humidity, pH, and Cl- concentration have been identified as the most relevant variables for predicting the corrosion rate of a bridge wire. By applying machine learning methods to a corrosion dataset in conjunction with these monitored environmental inputs, a long term corrosion rate model for bridge wires has been developed that is capable of capturing variability associated with these environmental parameters.
This long term corrosion rate model is then applied to establish a methodology that will allow bridge owners and engineers to estimate the remaining strength of a main cable at any point in time. This is accomplished through the use of continually monitored environmental parameters which are input into the corrosion rate model. Incorporating the long term corrosion rate model developed in this thesis with current strength estimation techniques, the methodology presented in this thesis for the estimation of the remaining strength of suspension bridge cables may be readily adapted to other bridges and can be used to complement the current best practices for bridge inspection.
|
Page generated in 0.104 seconds