• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 27
  • 18
  • 11
  • Tagged with
  • 103
  • 40
  • 31
  • 25
  • 17
  • 17
  • 14
  • 10
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Nitric oxide production by tobacco plants and cell cultures under normal conditions and under stress

Planchet, Elisabeth January 2004 (has links) (PDF)
Stickstoffmonoxid (NO) ist ein gasförmiges freies Radikal. In tierischen Geweben ist NO an der Regulation vieler physiologischer Prozesse beteiligt. In den letzten zehn Jahren wurde immer wahrscheinlicher, dass NO auch in Pflanzen als „second messenger“ fungiert. Besonderes Interesse fanden Berichte, dass NO als intermediäres Signal bei der Induktion der hypersensitiven Antwort (HR) von Pflanzen auf Pathogene involviert ist. Im Gegensatz zu Tieren haben Pflanzen wahrscheinlich eine Reihe verschiedener Systeme, die NO produzieren können. Potentielle Kandidaten dafür sind: cytosolische Nitratreduktase (NR; EC 1.6.6.1), PM-gebundene Nitrit: NO Reduktase (Ni:NOR), NO-Synthase (NOS; EC 1.14.13.39) und Xanthindehydrogenase (XDH; EC 1.1.1.204). Das Ziel dieser Arbeit bestand darin, die NO-Produktion von Pflanzen zu quantifizieren und die beteiligten enzymatischen Schritte zu identifizieren. Als wichtigste Methode zur NO-Messung wurde die Chemilumineszenz verwendet, mit der die NO Emission aus Pflanzen, Zellsuspensionen oder Enzymlösungen in NO-freie Luft oder N2 in Echtzeit verfolgt werden konnte. Wir benutzten für unsere Analyse: Tabak Wildtyp (N. tabacum cv Xanthi oder cv Gatersleben) und Zellsuspensionskulturen davon, NR-freie Mutanten oder WT Pflanzen, die auf Ammonium angezogen wurden um NR-Induktion zu vermeiden, Pflanzen die auf Wolframat an Stelle von Molybdat wuchsen um die Synthese funktionierender MoCo-Enzyme zu unterdrücken, und eine NO-überproduzierende, Nitritreduktase (NiR)-defiziente Transformante. Normale Blätter von nitraternährten Pflanzen zeigten eine typisches NO-Emissionsmuster,bei dem die NO-Emission im Dunkeln niedrig, im Licht viel höher, und unter anoxischen Bedingungen im Dunkeln mit weitem Abstand am höchsten war. Aber selbst nach Erreichen maximaler Raten war die NO-Emission höchstens 1 % der extrahierbaren NR Aktivität. Auch eine Lösung hochgereinigter Nitratreduktase produzierte NO aus den Substraten Nitrit und NADH, und auch hier war die Rate der NO-Emission nur maximal 1% der vorhandenen NR-Aktivität. Dieses übereinstimmende Verhältnis von NR Aktivität und NO-Emission in Blättern, Zellsuspensionen und einer NR-Lösung zeigt an dass die NO-Löschung nur gering war und dass deshalb die NO-Emissionsmessung eine zuverlässige Methode zur Quantifizierung der NO Produktion sein sollte. Die NO-Emission aus einer NiR-defizienten, nitritakkumulierenden Transformante warimmer sehr hoch. NR-freie Pflanzen oder Zellsuspensionen produzierten dagegen normalerweise kein NO, woraus geschlossen werden konnte, dass hier NR die einzige NOQuelle war. Die Rate war in der Regel korreliert mit der Nitritkonzentration, aber cytosolisches NADH erschien als ein weiterer wichtiger limitierender Faktor.Überraschenderweise reduzierten aber auch NR-freie Pflanzen oder Zellkulturen unter anoxischen Bedingungen Nitrit zu NO. Das beteiligte Enzymsystem war kein MoCo-Enzym und war Cyanid-sensitiv. Der pilzliche Elicitor Cryptogein induzierte nach Infiltration in Blätter oder nach Zugabe zu Zellsuspensionen bereits in nanomolaren Konzentrationen den Zelltod. Diese Antwort wurde verhindert oder zumindest stark verzögert durch den NO-Scavenger PTIO oder c-PTIO. Die Schlussfolgerung war zunächst, das NO tatsächlich an der HR-Induktion involviert war. Da aber das Reaktionsprodukt von c-PTIO und NO, c-PTI, den HR ebenfalls verhinderte ohne jedoch NO zu löschen, scheint die weit verbreitete Verwendung von c-PTIO und seinen Derivaten für die Beweisführung einer Beteiligung von NO zumindest fragwürdig. Der HR wurde unterschiedslos sowohl in WT-Pflanzen als auch in NR-freien Pflanzen bzw. Zellsuspensionen induziert. NR ist also offensichtlich für den HR nicht erforderlich. Im Gegensatz zur publizierten Literaturdaten verhinderte auch eine kontinuierliche hohe Überproduktion von NO die Ausprägung des HR nicht. Besonders überraschend war der Befund, dass trotz der Hemmung des HR durch PTIO keinerlei Cryptogein-induzierte NO Produktion in Blättern messbar war. Allerdings wurde in nitraternährten Zellsuspensionskulturen ca. 3-6 h nach Cryptogein-Gabe eine -wenn auch geringe-NOEmission beobachtet, die von einer Nitritakkumulation begleitet war. Beides blieb in Ammonium-ernährten Kulturen aus. Hier schien also eine gewisse Relation zwischen Cryptogein-induzierter NO Emission, NR und Nitrit zu bestehen, die im Detail noch nicht verstanden ist. Da der Zelltod aber auch in NR-freien Zellsuspensionskulturen auftrat, besteht offensichtlich kein kausaler Zusammenhang zwischen dieser NO-Emission, Nitritakkumulation und der Cryptogein-Wirkung. Da NOS-Inhibitoren weder den Zelltod noch die nitritanhängige NO-Emission verhinderten, scheint eine NOS-artige Aktivität ebenfalls keine Rolle zu spielen. Insgesamt werden damit die in der Literatur etablierte Rolle von NO als Signal beim HR und die Rolle von NOS als NO-Quelle stark in Frage gestellt. / Nitric oxide (NO) is a gaseous free radical involved in the regulation of diverse biochemical and physiological processes in animals. During the last decade, evidence has accumulated that NO might also play an important role as a second messenger in plants. Of special interest were observations that NO was involved in a signal chain leading to the hypersensitive response (HR) in incompatible plant-pathogen interactions. In contrast to animals, plants have probably several enzymes that may produce NO. Potential candidates are: Cytosolic nitrate reductase (NR; EC 1.6.6.1), plasma-membrane (PM)-nitrite: NO reductase (Ni:NOR), nitric oxide synthase (NOS; EC 1.14.13.39) and Xanthine dehydrogenase (XDH; EC 1.1.1.204). The major goal of this work was to quantify NO production by plants, and to identify the enzymes responsible for NO production. As a major method, NO production by tobacco leaves or cell suspensions was followed under normal, non-stress conditions, and under biotic stress, through on-line measurement of NO emission into the gas phase (chemiluminescence). Plants used were tobacco wild-type (N. tabacum cv Xanthi or cv Gatersleben), NR-free mutants grown on ammonium in order to prevent NR induction, plants grown on tungstate to inhibit synthesis of functional MoCoenzymes, and a NO-overproducing nitrite reductase (NiR)-deficient transformant. Induction of HR in tobacco leaves and in cell suspensions was achieved using the fungal peptide elicitor cryptogein. Non-elicited leaves from nitrate-grown plants showed a typical NO-emission pattern where NO-emission was low in dark, higher in the light and very high under dark-anaerobic conditions. Even at maximum rates, NO production in vivo was only a few percent of total NR activity (NRA). Consistent with that, with a solution of purified NR as a simple, “low quenching” system, NO-emission was also about 1 % of NRA. Thus, NO scavenging by leaves and stirred cell suspensions appeared small and NO-emission into purified air should give a reliable estimate of NO production. NO-emission was always high in a NiR-deficient transformant which accumulated nitrite, and NO-emission was completely absent in plants or cell suspensions which did not contain NR. Thus, in healthy plants or cell suspensions, NO-emission was exclusively due to the reduction of nitrite to NO, mainly by cytosolic NR. In addition to nitrite, cytosolic NADH appears as an important factor limiting NO production. Unexpectedly, plants (in absence of NR) were able to reduce nitrite to NO under anaerobic conditions through an unknown enzyme system that was not a MoCo-enzyme and was cyanide-sensitive. When infiltrated into leaves at nanomolar concentrations, the fungal elicitor cryptogein provoked cell death in tobacco leaves and cell suspensions. The HR could be prevented by the NO-scavengers PTIO or c-PTIO, suggesting that NO production was indeed required for the HR. However, the product of the reaction of c-PTIO with NO, c-PTI, also prevented cell death without quenching NO emission. Thus, prevention of cell death by c- PTIO is no proof for an involvement of NO. No differences were found in the HR induction between NR-free plants and/or cell suspensions and WT plants. Thus, NR appears not necessary for the HR. Further, and in contrast to literature suggestions, a continuously high NO-overproduction by a NiR-free mutant did not interfere with the development of the HR. Most surprisingly, no additional NO-emission from tobacco leaves was induced by cryptogein at any phase of the HR. In contrast, some NO-emission, paralleled by nitrite accumulation, was detected 3-6 h after cryptogein addition with nitrate grown cell suspensions, but not with NR free, ammonium- grown cells. Thus, induction of NO-emission by cryptogein appeared somehow correlated with NR and nitrite, at least in cell suspensions. But since cryptogein induced the HR even in NR-free cell suspensions, this nitrite-related NO- emission was not required for cell death. NOS inhibitors neither prevented cell death nor did they affect nitrite-dependent NO-emission. Thus, in total these data question the often proposed role of NO as a signal in the HR, and of NOS as source for NO.
32

Die Rolle der neuronalen Stickstoffmonoxid-Synthase im Herzen / The role of neuronal nitric oxide synthase in the heart

Link, Martin Benedikt [jetzt: Sittl, Martin] January 2011 (has links) (PDF)
Diese Arbeit zeigt, dass die spezifische Inhibition der neuronalen NO-Synthase zu einer Reduktion der myokardialen Ökonomie führt. Umgekehrt lässt sich postulieren, dass die Produktion von Stickstoffmonoxid durch die nNOS eine gesteigerte Effizienz des Herzmuskelgewebes bewirkt. / This study shows that specific inhibition of neuronal NO synthase leads to a reduction of myokardial efficiency. Vice versa one can postulate that the production of nitric oxide by nNOS improves the efficiency of the myokardium.
33

Kardiomyopathie bei der Chagas-Krankheit: Experimente zur Bedeutung von Stickstoffmonoxid (NO) und NO-Synthasen im Mausmodell / Chagas cardiomyopathy: experiments concerning the importance of nitric oxide (NO) and NO synthases in mice

Herterich, Theresa January 2019 (has links) (PDF)
Die Chagas-Krankheit ist in Südamerika eine der häufigsten Ursachen für die Entwicklung einer Herzinsuffizienz. Durch Bevölkerungsbewegungen gewinnt die Erkrankung auch in den USA und Europa immer mehr an Bedeutung. Auch über 100 Jahre nach ihrer Erstbeschreibung durch Carlos Chagas ist die Chagas-Krankheit noch wenig beforscht. Insbesondere im Hinblick auf die Therapie bedarf es neuer Erkenntnisse. Die derzeit für die Therapie der Chagas-Krankheit verwendeten Medikamente, Benznidazol und Nifurtimox, sind schon seit mehr als 40 Jahren zugelassen, haben zahlreiche Nebenwirkungen und sind in der chronischen Krankheitsphase nur unzureichend wirksam. Für Stickstoffmonoxid und den therapeutischen Einsatz von NO-Donatoren zeigten sich bereits in anderen Arbeitsgruppen vielversprechende Ergebnisse. Bis zur Zulassung dieser Substanzen für die Therapie am Menschen ist es jedoch noch ein weiter Weg. In dieser Arbeit sollte daher mit Pentalong ein bereits für die Therapie der Koronaren Herzkrankheit zugelassener NO-Donator im Hinblick auf die Chagas-Krankheit neu beleuchtet werden. Es kam hier jedoch aufgrund mangelnder Infektiosität der Trypanosomen in den Versuchstieren nicht zu einer sicheren Chronifizierung der Chagas-Krankheit. Daher lassen sich über den Einfluss von Pentalong auf die Chagas-Krankheit keine Aussagen treffen. Dieser Ansatz sollte aber weiter verfolgt werden. Dabei sollten Trypanosomen mit höherer Infektiosität eingesetzt werden, um Mausmodelle für die chronifizierte Chagas-Krankheit zu erhalten. Die Experimente mit Kardiomyozyten konnten zeigen, dass eine Infektion mit T. cruzi zur Induktion der induzierbaren NO-Synthase führt. Diese Induktion jedoch bewirkt keine höheren extrazellulären NO-Konzentrationen. Ob anhand dessen jedoch auf die intrazellulären NO-Level geschlussfolgert werden darf, bleibt unklar. Letztlich sollte dies und die durch intrazelluläres NO angestoßenen Prozesse Gegenstand weiterer Untersuchungen sein. In infizierten Kardiomyozyten konnten deutlich niedrigere ANP-Level gemessen werden als in nicht-infizierten Kardiomyozyten. Ob ANP nicht nur als prognostischer Marker in der Chagas-Kardiomyopathie, sondern auch als Parameter für das Infektionsausmaß genutzt werden könnte, sollte weiter beforscht werden. / Chagas disease is one of the main causes of heart failure in Latin America. Due to population movements Chagas disease also gains in importance in other countries for example the USA and Europe. More than 100 years after its discovery Chagas disease is still investigated insufficiently. Especially concerning the treatment of Chagas disease new findings are needed. Currently there are only two drugs - Benznidazol and Nifurtimox. They have been approved for over 40 years and have several side effects, furthermore they are not effective in chronic Chagas disease. Research concerning nitric oxide and the therapeutic use of NO donators showed promising results. However, there is of course a long way to go until those substances could be approved for human therapy. Therefore the goal was to investigate PETN (Pentalong®) – a NO donator already used in coronary heart disease – with regard to Chagas heart disease in mice. Unfortunately the test mice did not develop a chronic chagasic cardiomyopathy. This is due to the insufficient infectivity of the trypanosomes used for infection. Concerning the effectiveness of Pentalong® in Chagas heart disease we could not gain new knowledge, but it certainly should be further investigated. For this purpose trypanosomes with higher infectivity should be used in order to create a mouse model for chronic Chagas disease. Further experiments with cardiomyocytes showed that infection with T. cruzi leads to induction of the inducible NO synthase. However this does not lead to higher NO levels in the supernatant. As a next step intracellular NO levels should be further investigated. Infected cardiomyocytes showed manifestly lower levels of ANP compared to non-infected cardiomyocytes. If ANP could be used as a prognostic marker not only in Chagas cardiomyopathy but even for the degree of infection should be topic of further investigations.
34

Effekte von 200 myg gegenüber 800 myg Budesonid auf die NO-Exhalation und die EPX-Exkretion bei Kindern mit Asthma bronchiale

Endlicher, Alexandra. January 2000 (has links)
Freiburg, Univ., Diss., 1999.
35

Nitric oxide signalling in Arabidopsis thaliana : redox modification in mitochondria and regulation of transcription

Palmieri, Maria Cristina January 2009 (has links)
München, Techn. Univ., Diss., 2009.
36

Insight into oxidative stress mediated by nitric oxide synthase (NOS) isoforms in atherosclerosis

Padmapriya, Ponnuswamy January 2008 (has links)
Würzburg, Univ., Diss., 2008. / Zsfassung in dt. Sprache.
37

Untersuchungen zur Bedeutung von NOSTRIN in der Leberzirrhose und Charakterisierung einer neuen NOSTRIN-Isoform

Wiesenthal, Anja. Unknown Date (has links)
Universiẗat, Diss., 2007--Frankfurt (Main). / Zsfassung in dt. und engl. Sprache.
38

Einzelpuls Zwei-Linien-Thermometrie mit planarer laserinduzierter Fluoreszenz an NO-Molekülen in Hochenthalpieströmungen : 25 Tabellen /

Wollenhaupt, Matthias. January 1997 (has links) (PDF)
Zugl.: Bielefeld, Univ., Diss., 1997.
39

Pathologische Aktivierung des Gerinnungsfaktors XII - Heparin-Protamin-Komplikationen / Pathological activation of the coagulation factor XII - adverse effects of heparin-protamine

Johne, Julia January 2008 (has links) (PDF)
Protamin antagonisiert die antikoagulierende Wirkung von Heparin. Nach intravenöser Protaminapplikation treten als häufige unerwünschte Wirkungen ein systemischer Blutdruckabfall, Herzfrequenzabfall sowie eine Erhöhung des pulmonalarteriellen Widerstandes auf. Die Protamin-assoziierten Nebenwirkungen sind zum Teil lebensbedrohlich. Der ihnen zugrunde liegende Mechanismus wurde in der vorliegenden Arbeit auf Zellkultur- und Gesamttierebene analysiert sowie mögliche Therapieoptionen aufgezeigt. Heparin-Protamin-Komplexe aktivieren auf Endothelzellen den Blutgerinnungsfaktor XII. Aktiver Faktor XII startet über sein Substrat Plasmakallikrein die Freisetzung des Peptidhormons Bradykinin aus hochmolekularem Kininogen. Funktions-inhibierende Antikörper oder pharmakologische Inhibitoren von Plasmakallikrein oder Faktor XII blockierten die Heparin-Protamin induzierte Bradykininbildung auf Zellen. Stickstoffmonoxid-spezifische Fluorophore zeigten, dass Bradykinin-Bindung an Kinin B2 Rezeptoren die endotheliale Stickstoffmonoxid-Synthase aktiviert. B2 Rezeptorantagonisten blockierten die Heparin-Protamin induzierte Stickstoff-monoxidbildung. Die intravenöse Infusion von Protamin in heparinisierte Wildtypmäuse senkte den systemischen Blutdruck und die Herzfrequenz. Im Gegensatz dazu waren Faktor XII und B2 Rezeptor Gen-defiziente Mäuse oder Tiere, die Faktor XII Inhibitoren oder B2 Rezeptorantagonisten infundiert bekamen, vor Heparin-Protamin-Effekten geschützt. Mit dieser Arbeit konnte gezeigt werden, dass Heparin-Protamin-Komplikationen durch eine Faktor XII-getriebene Bradykininbildung verursacht werden. Eine Blockade der Bradykininbildung oder -wirkung eröffnet eventuell eine Möglichkeit, die Heparin-Protamin-Nebenwirkungen auch beim Patienten zu therapieren. / Protamine is the antidot for anticoagulant effects of heparin. Intravenous application of protamine may cause systemic hypotension, heart rate decrease and increase in pulmonary pressure. Adverse effects associated with protamine are common and potentially life-threatening. This work characterizes the pathomechanism of heparin-protamine-effects in cell culture and in transgenic mice and suggests therapeutic options to block the adverse effects. Heparin-protamine-complexes activate blood coagulation factor XII on endothelial cells. Active factor XII initiates the generation of the vasoactive peptide hormone bradykinin from high molecular weight kininogen by plasmakallikrein action. Antibodies or low molecular weight inhibitors that interfere with factor XII or plasmakallikrein activity blocked heparin-protamine-induced bradykinin effects on cells. Nitric oxide-specific dyes revealed that bradykinin-binding to kinin B2 receptors activates the endothelial nitric oxide synthase. B2 receptor antagonists interfered with heparin/protamine-driven nitric oxide generation. Intravenous application of protamine into heparinized wildtype mice reduced systemic blood pressure and heart rate. Factor XII or B2 receptor deficient mice were protected from heparin-protamine-effects. Consistently, pharmacological targeting of B2 receptors or factor XII inhibited protamine associated cardiovascular effects in heparinized wildtype mice. Together, this work demonstrates that heparin-protamine-adverse effects are due to factor XII activation that culminates in the generation of bradykinin. Inhibition of bradykinin formation or signaling may offer novel strategies to block adverse heparin-protamin-effects in patients.
40

Verbesserung der vaskulären Dysfunktion bei Diabetes mellitus durch Aktivierung der Guanylatzyklase / Improvement of Vascular Dysfunction in Diabetes mellitus by Chronic Guanylyl Cyclase Activation

Vogt, Christian Roland Jens January 2009 (has links) (PDF)
Die vorliegende Arbeit untersucht den Effekt des Guanylatzyklase-Aktivators HMR1766 auf die vaskuläre Dysfunktion bei Streptozotozin-(STZ-)induziertem Diabetes mellitus im experimentellen Rattenmodell. Zunächst wird anhand funktioneller Studien die vaskuläre Reaktivität aortaler Gefäßringe gesunder, Placebo- und HMR1766-behandelter Tiere verglichen. Davon ausgehend werden weiterführende experimentelle Daten dargestellt, die mögliche Wirkungsmechanismen von HMR1766 im STZ-Diabetes-Modell beschreiben und einen Erklärungsansatz für die funktionell gewonnenen Daten liefern. Es wird gezeigt, dass eine chronische Behandlung mit HMR1766 die endotheliale Dysfunktion im STZ-Diabetes signifikant verbessern kann. HMR1766 verstärkt den Stickstoffmonoxid-(NO-)Signalweg über die lösliche Guanylatzyklase zum zyklischen Guanosinmonophosphat (cGMP), normalisiert die eingeschränkte Vasorelaxation, führt zu einer gesteigerten NO-Bioverfügbarkeit und erhöht so die inhibitorische Wirkung von NO auf die Superoxid-produzierende NADPH-Oxidase. Dadurch wird der oxidative Stress signifikant reduziert und die NO-Inaktivierung durch Superoxid verringert. Die vorgelegten Daten stellen ferner einen Zusammenhang her zwischen dem vaskulären Kontraktionsdefizit bei Diabetes und einem Ungleichgewicht im Arachidonsäuremetabolismus. Durch eine Überexpression von Cytochrom-P450-2E1 (CYP2E1) im STZ-Modell kommt es zu einem Defizit der vasokonstriktorisch wirkenden 20-Hydroxyeicosatetraensäure (20-HETE). Dies führt zu einem verminderten Ansprechen der Gefäße auf Vasokonstriktoren wie Phenylephrin. HMR1766 kann durch die Verbesserung des NO/cGMP-Signals die katalytische Aktivität von CYP2E1 hemmen, dadurch das 20-HETE-Defizit ausgleichen und die vaskuläre Reaktivität wieder normalisieren. Zusammenfassend zeigen die dargestellten Ergebnisse, dass eine Behandlung mit HMR1766 bei STZ-induziertem Diabetes mellitus zu einer signifikanten Verbesserung der vaskulären Dysfunktion führt. Eine Behandlung mit HMR1766 könnte daher ein sinnvoller Ansatz sein zur Vermeidung vaskulärer Komplikationen bei Diabetes mellitus. / Background: Vascular endothelial dysfunction and the so-called non-contractile phenotype of smooth muscle cells are well described in diabetes mellitus. Endothelial dysfunction results in decreased signalling through the NO/sGC/cGMP-pathway leading to decreased levels of cGMP in diabetes. This study investigated in STZ-diabetic rats whether chronic stimulation of guanylyl cyclase with the novel activator HMR1766 would improve vascular reactivity in diabetes. Results: Endothelium-dependent as well as endothelium-independent nitric oxide-mediated vasorelaxation was significantly impaired in diabetic placebo-treated animals and was completely normalized by treatment with HMR1766, indicating improved signalling through the NO/sGC/cGMP-signalling cascade. NOS-inhibitor-induced contraction of slightly preconstricted aortic rings was significantly attenuated in diabetic animals indicating reduced NO-bioavailability. This was also normalized by treatment with HMR1766. Oxidant stress is a major cause of reduced endothelial NO-bioavailability in diabetes. Increased expression of NAD(P)H-oxidase subunits was demonstrated in this study, resulting in enhanced oxidative stress and reduced NO-bioavailability. Chronic treatment with HMR1766 reduced the enhanced superoxide formation and expression of the NAD(P)H-oxidase subunit gp91phox in STZ-diabetic aortae. Diabetic rats displayed a highly significant reduction in vascular contraction compared to healthy control animals as described for the diabetic, non-contractile phenotype. Furthermore, this study shows that the increased expression of CYP2E1 in STZ-diabetes also contributes – due to a following imbalance in arachidonic acid metabolism and decreased levels of 20-HETE – to a decreased vasoconstriction in the aortic rings. Treatment with HMR1766 reduced the catalytic activity of CYP2E1 and normalized vascular contraction. Conclusion: Chronic guanylyl cyclase activation in diabetes improves vascular relaxation and contraction by improving release of and sensitivity for nitric oxide. HMR1766 significantly enhanced the reduced signaling through the NO/sGC/cGMP-pathway in diabetes and might be a new potential therapeutic approach for treatment of vascular dysfunction in diabetes.

Page generated in 0.0184 seconds