• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 15
  • 13
  • 10
  • 7
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 154
  • 56
  • 42
  • 32
  • 28
  • 26
  • 25
  • 21
  • 20
  • 17
  • 15
  • 14
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Stirling Engine: Thermodynamics And Applications In Combined Cooling, Heating, And Power Systems

Harrod, James Clayton 10 December 2010 (has links)
The goal of this study is to assess the potential of the Stirling engine in alternative energy applications including combined cooling, heating, and power (CCHP) and novel waste heat recovery (WHR) technologies. A first and second law model is developed to quantify Stirling engine performance and realize the crucial parameters in Stirling engine design. In addition, analysis of systems employing the Stirling engine as a prime mover can help justify particular design interests for the engine regarding certain applications. A model of a CCHP system is developed with a Stirling engine prime mover. Sensitivity analysis is performed on the CCHP system to gain a deeper understanding of how each component affects the overall performance of the CCHP system. The main objective of these analyses is to provide information on the feasibility of Stirling CCHP on the basis of primary energy consumption and cost. Finally, the potential of the Stirling engine as a waste heat recovery device is investigated. A thermodynamic model is developed to provide estimates of Stirling engine performance based on an available waste heat stream from any specific heat source, while suggesting practical design constraints on the engine based on bounds from the second law. These results are provided to strengthen the feasibility of the Stirling engine as a bottoming prime mover rather than the central power plant.
12

Active Stirling Engine

Gopal, Vinod Kumar January 2012 (has links)
Micro Combined Heat and Power systems or microCHP systems generate heat and electricity for a home. Stirling engines are widely used as prime movers in microCHP applications. Stirling engine is an external combustion engine having an enclosed working fluid (as helium) that is alternately compressed and expanded to operate a piston. The displacer shuttles the working fluid between the hot and cold ends. The piston is coupled to a transmission and to an electrical machine to generate power. Conventional Stirling engines are not controllable to a great degree. The piston and displacer are connected to the same crank and they maintain the same phase difference throughout the cycle. Also the piston and displacer are normally constructed to move in a sinusoidal fashion. The Active Stirling Engine is a new concept introduced in this thesis which has a free displacer. The displacer is driven separately compared to a coupled drive in conventional Stirling engines. The displacer motion can be non-linear with dwell at each ends of the stroke, opening up the possibilities to increase the pressure volume diagram which indicates the work done by the engine. A separately driven displacer also allows introducing phase control and stroke control to improve the controllability of a Stirling engine. This thesis examines the effect of non-linear displacer motion and phase control of the displacer on Stirling engine performance. Simulations are performed in Sage, the leading Stirling engine simulation software, to understand the effect of displacer phase control. A test rig is constructed with the actively controlled displacer connected to a linear machine controlled by a programmable servo. Heat is applied to the test rig though an electric heating coil. The test rig is charged with nitrogen at 20Bar pressure. The power piston is connected to a rotating electrical machine via the transmission. The rotating electrical machine is used to start the engine and to act as the generator. The test rig is instrumented to determine the linear position of the displacer and piston, angular position of the rotating electrical machine shaft, temperatures, pressures and flow. A LabVIEW™ based data acquisition system is set up to capture data from the test rig. Data is collected at various test cases. The simulation result is compared against post processed data. An efficiency improvement of 15% is achieved using this method and is demonstrated experimentally. Applications in micro combined heat and power systems utilising the improved efficiency due to non linear motion and controllability due to phase control are explored in this thesis.
13

Construction and testing of a low temperature differential Stirling engine for power generation 2

Postles, Phillip Anthony January 2015 (has links)
This thesis presents the design and construction of a low temperature differential (LTD) Stirling engine for electric power generation. The target energy sources were geothermal, industrial waste heat or solar heated water. These sources would supply a source temperature of around 90 °C. Assuming that the sink is kept at around 20 °C, the engine was designed based on a temperature difference of approximately 70 °C. The initial design and basic structure of the engine was completed in a previous project utilising first order design methods. The goal was to develop a low cost prototype engine capable of producing up to 500W electrical output power. A novel gamma type engine was proposed utilising a rotary reciprocating displacer and industrial steam piping to form a low cost pressurised chamber. This project concentrated on advancing the design and construction towards completion with particular emphasis on the electrical control, measurement/instrumentation components, and gas flow through the regenerator. At the completion of this project the displacer piston actuation system has been redesigned. In order to achieve the displacer’s specified 2 ㎐ actuation, both the displacer’s structure and the actuation system were altered. The displacer’s aluminium shell and foam centre were removed and replaced with a pine superstructure coated in depron foam, reducing the moment of inertia from 0.4488 ㎏ ∙ ㎡ to 0.0984 ㎏ ∙ ㎡. A secondary motor was added to the actuation system to increase the actuation power. The gearing ratio was also altered from 10:1 to 2:1 to increase the peak displacer speed. The regenerator was designed and built to suit the unusual wedge shape requirements of the original design. A ribbed structure was conceived to allow fluid flow to be manipulated within separate sections, producing an even pressure drop over varying regenerator lengths. Simulations were run to optimise both the number of sections and the mass of wire wool to be placed in each segment. The final regenerator design has axial ribs placed at radii of 93, 134, 192, 276 and 392mm, creating four sections. These sections are filled with 0.68, 0.97, 1.40 and 1.90kg of #0 mild steel wire wool. As Stirling engines are not self-starting the generator was required to be run as a motor when starting the Stirling engine. To achieve bidirectional flow of current within the starter motor/generator control system, a field oriented control (FOC) inverter from Texas Instruments was purchased and set up to run the 1kW, 3 phase, permanent magnet generator in both motor and generation modes. This will allow the Stirling engine to be brought up to speed with the generator operating as a motor and then switch to generation mode when the motoring current falls below a set limit. Both pressure and temperature measurement systems were developed, constructed and tested in order to collect information about the performance of the engine under operation. Three pressure transducer circuits were designed and constructed with measurement ranges of 10 ㎪, ±0.99 ㎪ and ±6.66 ㎪. These circuits were integrated with a PiocLog1012 analog to digital converter and PicoLog recording software. Eight K-type thermocouples were used for temperature recording. These were sampled with a Pico Technology TC-08 temperature thermocouple data logger which in turn was connected, via USB, to a computer running PicoLog Recorder software. Thus far all component testing has been carried out with test rigs that model the relevant parts of the engine. The displacer actuation system and phase angle control of the displacer and power piston has been tested. Temperature and pressure measurement systems have been independently tested. Motor/generator speed control and switching has been simulated and tested. Unfortunately completion of the engine assembly was not achieved within the scope of this project and therefore fully integrated testing of all components was not carried out. Once mechanical assembly is completed fully integrated testing of displacer actuation, piston position, generator speed control and measurement systems can be achieved.
14

A study of the impact of the University of Stirling on the local economy

Brownrigg, Mark January 1971 (has links)
Extract from the introduction: The effect on the local economy of the establishment of a new University at Stirling will be equivalent to the introduction of a major new industry to the region. Given the nature of the employment offered by the new University, it is likely that there will occur a significant wave of immigration to the area. Since the growth and development of the University will have considerable repercussions on the local employment situation and on population, it is therefore necessary to provide, for practical planning purposes, a series of detailed estimates of these repercussions. With the University taking the nature of a catalyst in this situation, the main objective of the thesis is to analyse and attempt to quantify the economic effects of its development on the local economy. Equally, however, during the period of University expansion, there will be further growth from the continuing development of the local economy in its own right; the second main objective of the thesis must therefore be to study the various internal aspects of the local economy and provide from this further estimates of its growth or decline during the period. It is only by amalgamating the forecasts of both the internal and the University sources of development over the period, that final estimates can be made of the overall situation in the local economy. The provisions of these estimates should be of some interest and assistance to Local Authorities in their planning decisions for future provision of housing, schools, hospitals, roadworks etc, as well as their allocation of space for private industrial development in the area.
15

Preliminary Analysis of an Innovative Rotary Displacer Stirling Engine

Bagheri, Amirhossein 12 1900 (has links)
Stirling engines are an external combustion heat engine that converts thermal energy into mechanical work that a closed cycle is run by cyclic compression and expansion of a work fluid (commonly air or Helium) in which, the working fluid interacts with a heat source and a heat sink and produces network. The engine is based on the Stirling cycle which is a subset of the Carnot cycle. The Stirling cycle has recently been receiving renewed interest due to some of its key inherent advantages. In particular, the ability to operate with any form of heat source (including external combustion, flue gases, alternative (biomass, solar, geothermal) energy) provides Stirling engines a great flexibility and potential benefits since it is convinced as engines running with external heat sources. However, several aspects of traditional Stirling engine configurations (namely, the Alpha, Beta, and Gamma), specifically complexity of design, high cost, and relatively low power to size and power to volume ratios, limited their widespread applications to date. This study focuses on an innovative Stirling engine configuration that features a rotary displacer (as opposed to common reciprocating displacers), and aims to utilize analytical and numerical analysis to gain insights on its operation parameters. The results are expected to provide useful design guidelines towards optimization. The present study starts with an overview of the Stirling cycle and Stirling engines including both traditional and innovative rotary displacer configurations, and their major advantages and disadvantages. The first approach considers an ideal analytical model and implements the well-known Schmidt analysis assumptions for the rotary displacer Stirling engine to define the effects of major design and operation parameters on the performance. The analytical model resulted in identifying major variables that could affect the engine performance (such as the dead volume spaces, temperature ratios and the leading phase angle). It was shown that the dead volume could have a drastic effect over the engine performance and the optimum phase angle of the engine is 90o. The second approach considers a non-ideal analytical model and aims to identify and account the main sources of energy losses in the cycle to better represent the engine performance. The study showed that the ideal efficiency and the non-ideal efficiency could have 15% difference that could have as an enormous effect on the engine performance.
16

A computer and experimental simulation of Stirling cycle machines

Berchowitz, David M 04 October 2011 (has links)
MSc, Faculty of Engineering, University of the Witwatersrand, 1978
17

Efficiency and Emissions Study of a Residential Micro–cogeneration System Based on a Stirling Engine and Fuelled by Diesel and Ethanol

Farra, Nicolas 31 December 2010 (has links)
This study examined the performance of a residential micro–cogeneration system based on a Stirling engine and fuelled by diesel and ethanol. An extensive number of engine tests were conducted to ensure highly accurate and reproducible measurement techniques. Appropriate energy efficiencies were determined by performing an energy balance for each fuel. Particulate emissions were measured with an isokinetic particulate sampler, while a flame ionization detector was used to monitor unburned hydrocarbon emissions. Carbon monoxide, nitric oxide, nitrogen dioxide, carbon dioxide, water, formaldehyde, acetaldehyde and methane emissions were measured using a Fourier transform infrared spectrometer. When powered by ethanol, the system had slightly higher thermal efficiency, slightly lower power efficiency and considerable reductions in emission levels during steady state operation. To further study engine behaviour, parametric studies on primary engine set points, including coolant temperature and exhaust temperature, were also conducted.
18

Efficiency and Emissions Study of a Residential Micro–cogeneration System Based on a Stirling Engine and Fuelled by Diesel and Ethanol

Farra, Nicolas 31 December 2010 (has links)
This study examined the performance of a residential micro–cogeneration system based on a Stirling engine and fuelled by diesel and ethanol. An extensive number of engine tests were conducted to ensure highly accurate and reproducible measurement techniques. Appropriate energy efficiencies were determined by performing an energy balance for each fuel. Particulate emissions were measured with an isokinetic particulate sampler, while a flame ionization detector was used to monitor unburned hydrocarbon emissions. Carbon monoxide, nitric oxide, nitrogen dioxide, carbon dioxide, water, formaldehyde, acetaldehyde and methane emissions were measured using a Fourier transform infrared spectrometer. When powered by ethanol, the system had slightly higher thermal efficiency, slightly lower power efficiency and considerable reductions in emission levels during steady state operation. To further study engine behaviour, parametric studies on primary engine set points, including coolant temperature and exhaust temperature, were also conducted.
19

Development of computer simulation package for a stirling cryocooler with multiple expansion stages

Tang, Kuo-Chiang. January 1992 (has links)
Thesis (M.S.)--Ohio University, November, 1992. / Title from PDF t.p.
20

Development and implementation of an apparatus for polymeric piston-ring performance tests in controlled environment

Esmaili, Mahyar. January 1993 (has links)
Thesis (M.S.)--Ohio University, August, 1993. / Title from PDF t.p.

Page generated in 0.0543 seconds