• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • Tagged with
  • 12
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermo-fluiddynamische Eigenschaften von Brandunterdrückungslöschern mit Gasgeneratoren

Pettinger, Stephan. Unknown Date (has links)
Techn. Universiẗat, Diss., 2005--München.
2

Shock induced bubble explosions in liquid cyclohexane

Mitropetros, Konstantinos. Unknown Date (has links) (PDF)
Techn. University, Diss., 2005--Berlin.
3

Naturfaserverstärkter Polymerbeton : Entwicklung, Eigenschaften und Anwendung /

Gallenmüller, Meike. January 2006 (has links)
Universiẗat der Bundeswehr, Diss., 2005--München.
4

Creation of high energy density in matter with heavy ion beams for equation of state studies

Kozyreva, Anna. Unknown Date (has links)
Techn. University, Diss., 2003--Darmstadt.
5

Staubzerstörung durch interstellare Stoßfronten / Dust destruction in interstellar shocks

Völker, Roland January 2003 (has links) (PDF)
Ein Teil der interstellaren Materie (ISM) liegt in Form von winzigen Festkörpern vor, die mit dem interstellaren Gas vermischt sind. Diese Teilchen werden als interstellarer Staub bezeichnet. Obwohl der Staubanteil an der Gesamtmasse der ISM nur etwa 1% beträgt, kann sein Einfluß auf das interstellare Strahlungsfeld und die Dynamik des Gases nicht vernachlässigt werden. So ist er die Hauptursache für Extinktion, Streuung und Polarisation von Licht. Außerdem stellt der Staub ein wichtiges Kühlmittel für das interstellare Medium dar und beeinflußt die chemischen Prozesse innerhalb der ISM. Staubpartikel unterliegen Wachstums- und Zerstörungsprozessen. So können sie Moleküle aus der Umgebung an ihrer Oberfläche anlagern (Akkretion) oder sich mit anderen Partikeln zu größeren Staubteilchen verbinden (Koagulation). Durch die Wechselwirkung mit Ionen kann Oberflächenmaterial abgetragen werden (Sputtering) und das Kollidieren von Staubpartikeln führt zu deren Zerschlagung in kleinere Teilchen oder (Shattering) deren Vaporisation. Außerdem sind Staubpartikel an das Gas gekoppelt und werden von diesem mitgerissen. Der Schwerpunkt der Vorliegenden Arbeit war die Untersuchung der dynamischen Prozesse, denen Staubpartikel bei der Durchquerung von interstellaren Stoßfronten unterworfen sind. In diesem Zusammenhang spielen vorallem die destruktiven Prozesse und die Kopplung an das Gas eine wichtige Rolle. Es wurden Gleichungen eingeführt, die die Änderung einer Staubverteilung durch diese Vorgänge beschreiben. Im Gegensatz zu bisherigen Modellen werden die Staubteilchen darin nicht allein durch ihre Masse, sondern auch durch ihre Geschwindigkeit charakterisiert. Auf diese Weise kann die Impulserhaltung bei einer Partikelkollision gewährleistet werden und es ist beispielsweise möglich auch Stöße gleich schwerer Partikel zu beschreiben. Die Gleichungen der Staub- und Hydrodynamik wurden für den Fall von stationären, eindimensionalen Stoßwellen numerisch gelöst, wobei die Wechselwirkungen zwischen Gas und Staub berücksichtigt wurden. Mit Hilfe des Modells wurden die Wirkung verschieden starker Stoßwellen auf eine Staubverteilung untersucht. Dabei wurden verschiedene Staubmaterialien zugrunde gelegt. / A part of the interstellar matter (ISM) has the shape of tiny solids which are mixed with the interstellar gas. These particles are called interstellar dust. Although the dust's share of the ISM's total volume only amounts to 1%, its influence on the interstellar radiation field and the gas dynamics can't be neglected. Thus it's the chief cause of the extinction, the scattering and the polarisation of light. Furthermore the dust proves to be an important cooling agent for the interstellar medium and it influences the chemical processes within the ISM. Dust particles are subjected to processes of growth and destruction. That's why they are able to attach molecules from the environment to their surface (accretion) or to connect with other particles to form bigger dust grains (coagulation).The dust particles' surface can be carried off by interaction with ions (sputtering) and the collision of dust grains causes their breakup into smaller fragments (shattering) or their vaporization. In addition, the dust particles are linked to the gas and are carried away by it. This representation's main focus has been placed on the analysis of those dynamic processes dust particles are subjected to while crossing interstellar shock fronts. The destructive processes and the particles' linking to the gas are particularly important in this context, because they modify the dust distribution. Equations describing these modifications have been set up and a new model has been developed. But in contrast to all previous models this one characterizes the dust particles not only by their mass but also by their velocity. That way the conservation of momentum during a collision of particles can be guaranteed and moreover it's possible to describe shocks of particles having the same weight. The equations describing dust- and hydrodynamics have been solved numerically in the case of stationary one-dimensional shocks. In doing so, the interactions between gas and dust have been taken into account. The effects shocks of varying forces have on dust distribution have been examined with the help of this model. Different dust materials formed the study's base.
6

Fracture dynamics in silicate glasses / Bruchdynamiken in Silikatgläsern

Dürig, Tobias January 2011 (has links) (PDF)
Understanding the mechanisms of fragmentation within silicate melts is of great interest not only for material science, but also for volcanology, particularly regarding molten fuel coolant-interactions (MFCIs). Therefore edge-on hammer impact experiments (HIEs) have been carried out in order to analyze the fracture dynamics in well defined targets by applying a Cranz-Schardin highspeed camera technique. This thesis presents the corresponding results and provides a thorough insight into the dynamics of fragmentation, particularly focussing on the processes of energy dissipation. In HIEs two main classes of cracks can be identified, characterized by completely different fracture mechanisms: Shock wave induced “damage cracks” and “normal cracks”, which are exclusively caused by shear-stresses. This dual fracture situation is taken into account by introducing a new concept, according to which the crack class-specific fracture energies are linearly correlated with the corresponding fracture areas. The respective proportionality constants - denoted “fracture surface energy densities” (FSEDs) - have been quantified for all studied targets under various constraints. By analyzing the corresponding high speed image sequences and introducing useful dynamic parameters it has been possible to specify and describe in detail the evolution of fractures and, moreover, to quantify the energy dissipation rates during the fragmentation. Additionally, comprehensive multivariate statistical analyses have been carried out which have revealed general dependencies of all relevant fracture parameters as well as characteristics of the resulting particles. As a result, an important principle of fracture dynamics has been found, referred to as the “local anisotropy effect”: According to this principle, the fracture dynamics in a material is significantly affected by the location of directed stresses. High local stress gradients cause a more stable crack propagation and consequently a reduction of the energy dissipation rates. As a final step, this thesis focusses on the volcanological conclusions which can be drawn on the basis of the presented HIE results. Therefore fragments stemming from HIEs have been compared with natural and experimental volcanic ash particles of basaltic Grimsvötn and rhyolitic Tepexitl melts. The results of these comparative particle analyses substantiate HIEs to be a very suitable method for reproducing the MFCI loading conditions in silicate melts and prove the FSED concept to be a model which is well transferable to volcanic fragmentation processes. / Forschungen mit dem Ziel die Abhängigkeiten und Mechanismen von Bruchprozessen in amorphen silikatischen Materialien exakt verstehen zu lernen, sind nicht nur in den Materialwissenschaften, sondern darüber hinaus auch in der Vulkanologie von größter Bedeutung, vor allem auch im Hinblick auf thermohydraulische Schmelze-Wasser-Wechselwirkungen (sog. "molten fuel coolant-interactions", MFCIs). Aus diesem Grund wurden Hammerschlagexperimente (HIEs) durchgeführt, um unter Verwendung einer Cranz-Schardin Funkenzeitlupe die Bruchdynamiken in exakt definierten Versuchsmaterialien zu analysieren. Die vorliegende Arbeit stellt die Ergebnisse dieser Versuchsreihen vor und beleuchtet detailliert die zeitlichen Abläufe während der Fragmentation, wobei sie ihr Hauptaugenmerk besonders auf die energetischen Dissipationsprozesse beim Rissfortschritt richtet. In den HIEs können zwei Hauptklassen von Rissen identifiziert werden, welche durch vollkommen unterschiedliche Rissmechanismen gekennzeichnet sind: Stoßwelleninduzierte "Schadensrisse" ("damage cracks") und "Normalrisse" ("normal cracks"), welche ihre Ursachen ausschließlich in Scherspannungen haben. Diesem parallelen Vorhandensein beider Rissklassen wurde mit einem neu entwickelten Konzept Rechnung getragen: Ihm zufolge sind die rissklassenspezifischen Bruchenergien direkt proportional zur jeweiligen Bruchfläche, wobei die entsprechenden Proportionalitätskonstanten als Bruchflächenenergiedichten ("fracture surface energy densities", FSEDs) bezeichnet werden. Ihre Werte wurden für alle untersuchten Targets unter verschiedenen, genau definierten Randbedingungen ermittelt. Die Auswertungen der Zeitlupenaufnahmen und die Einführung neuer bruchdynamischer Parameter ermöglichten nicht nur eine detaillierte Beschreibung der Rissentwicklung im Target, sondern darüber hinaus auch quantitative Aussagen zur Dynamik der Bruchenergiedissipationsraten. Mit Hilfe umfassender multivariater statistischer Analysen war es zudem möglich, die allgemeinen Abhängigkeiten aller relevanten Bruchparameter sowie die Einflüsse auf die kennzeichnenden Merkmale der bei der Fragmentation erzeugten Partikel herauszufinden. Auf diese Weise konnte ein wichtiges Prinzip der Bruchdynamik nachgewiesen werden, das in dieser Arbeit als "lokaler Anisotropieeffekt" (“local anisotropy effect”) bezeichnet wird. Diesem Prinzip zufolge wird die Bruchdynamik in einem Material signifikant durch die Lage von gerichteten Spannungen beeinflusst: Hohe örtliche Spannungsgradienten senkrecht zur Bewegungsrichtung des Risses bewirken eine stabilere Rissausbreitung und damit eine Verringerung der Energiedissipationsraten. In einem letzten Schritt beschäftigt sich die vorliegende Arbeit mit der Frage, welche vulkanologischen Schlussfolgerungen man aus den vorgestellten Versuchsergebnissen ziehen kann. Dazu wurden die erzeugten HIE-Fragmente mit natürlichen und experimentellen vulkanischen Aschen verglichen, welche von rhyolitischen Tepexitl- und basaltischen Grimsvötn-Schmelzen entstammten. Auf Grundlage dieser Partikelvergleiche konnte gezeigt werden, dass die Hammerschlagsversuche eine geeignete Methode darstellen, um genau jene Belastungsbedingungen zu reproduzieren, welchen Magmen während eines MFCI ausgesetzt sind. Zudem wurde damit der Nachweis erbracht, dass das in dieser Arbeit vorgestellte FSED-Konzept sich adäquat auf vulkanische Fragmentationsprozesse übertragen lässt.
7

Computergestützter Entwurf nichtlinearer Transmissionsleitungen zur Erzeugung elektrischer Transienten im Picosekunden-Bereich

Langer, Thomas. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2001--Berlin.
8

Modelling and diagnostics of forbidden emission lines in shocked atmospheres of Mira variables

Richter, Heike. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Berlin.
9

Schockwellensynthese und Charakterisierung von Aluminiumnitrid mit Kochsalzstruktur

Keller, Kevin 06 February 2014 (has links) (PDF)
Die vorliegende Arbeit beschreibt die Ergebnisse der Synthese und Charakterisierung der Hochdruckphase von Aluminiumnitrid mit Kochsalzstruktur (rs-AlN). Die Versuche wurden mittels Schockwellensynthese unter Verwendung der „flyer-plate-Methode“ mit anschließender Probenrückgewinnung durchgeführt. Für verschiedene Aluminiumnitridpulver mit einer Ausgangsporosität k = rho_solid/rho_porous von 1,5 bis 2,5 wurde bei einem Druck von 15 bis 43 GPa die Phasenumwandlung von der Wurtzitstruktur (w-AlN) in die Kochsalzstruktur (rs-AlN) bewirkt. Es ist damit erstmals gelungen, rs-AlN mit dynamischen HP-HT-Methoden herzustellen und damit Probenmengen im Milligramm- bis Grammbereich zu erhalten. Dadurch ist es möglich Untersuchungen durchzuführen, die zur weiteren Erforschung und Charakterisierung des Materials beitragen sollen. Im Fokus liegen dabei insbesondere die Untersuchung der mechanischen, thermischen und chemischen Stabilität, um die Eignung des Materials zur Herstellung ultraharter Komposite zu evaluieren. Die geschockten Pulver bestehen aus einem Phasengemisch aus dem Ausgangsmaterial (w-AlN), der Hochdruckphase (rs-AlN), Aluminiumoxid und -oxynitriden, sowie amorphen Aluminiumhydroxiden. Die höchste Ausbeute an rs-AlN (~41 Ma% bei 2 mm Probenhöhe) kann bei Drücken von 24 GPa und einer Ausgangsporosität k von 2,1 erhalten werden. Anhand dem Auftreten verschiedener Al-O-N Phasen kann die Schocktemperatur für die einzelnen Versuche abgeschätzt werden (<1700 °C bis <2000 °C). Die Phasenumwandlung wird durch die Temperaturerhöhung aufgrund der Schockkompaktion der Pulver aktiviert. Als entgegenwirkender Prozess wurde die thermisch aktivierte Rückwandlung in die Niederdruckphase w-AlN aufgrund einer zu hohen Post-Schocktemperatur und einem zu langsamen Abkühlen der Probe postuliert. Daraus ergibt sich eine optimale Temperatur für den Versuchsaufbau von 1700 bis 1900 °C, bei der die höchsten rs-AlN Anteile beobachtet wurden. Eine Verringerung der Probenhöhe erhöht den Einfluss von Mehrfachreflektionen in der Probe und trägt damit zur Verbesserung der Umsetzung bei. Für drei Nanopulver (Kristallitgröße <25 nm) wurde die teilweise Umwandlung in die Kochsalzstruktur beobachtet, wohingegen für ein gröberes Nanopulver und ein Submikropulver (Kristallitgröße >45 nm) kein rs-AlN in den geschockten Proben nachgewiesen werden konnte. Es wird ein Stabilisierungsmechanismus der Kochsalzstruktur durch Kristallitgrößeneffekte vorhergesagt. Die Verringerung der Kristallitgröße führt zur Herabsetzung des Umwandlungsdrucks w-AlN -> rs-AlN. Es lässt sich daher schlussfolgern, dass für kleinere Partikel die Hochdruckmodifikation aufgrund der geringeren Entfernung vom chemischen Gleichgewicht bei Normalbedingungen stabilisiert werden kann, wohingegen für größere Kristallite die Rückwandlung in die Ausgangsphase geschieht. Weitere Stabilisierungsmechanismen wurden diskutiert. Mithilfe einer Rietveld-Verfeinerung der Röntgendiffraktogramme wurde die Gitterkonstante des rs-AlN mit a = 4,044 ± 0,001 Å und die Kristallitgröße mit 15,3 ± 0,2nm bestimmt. Die mittels hoch-aufgelöster Transmissionselektronenmikroskopie (TEM) bestimmte Kristallitgröße (10 bis 20 nm) ist in guter Übereinstimmung mit den Ergebnissen der Rietveld-Verfeinerung. Mit 27Al Kernspinresonanzspektroskopie (NMR) wurde die oktaedrische Al–N-Umgebung (AlN6) mit einer korrigierten chemischen Verschiebung von 2 ppm nachgewiesen. Anhand der IR-Spektren wird eine Al–N-Schwingungsbande des rs-AlN bei ca. 490 cm−1 vermutet. Dynamisch-thermische Untersuchungen zeigen, dass nanokristallines rs-AlN bei 600 °C beginnt zu Aluminiumoxid zu oxidieren und damit keine größere Beständigkeit im Vergleich zum w-AlN zeigt. Die thermisch aktivierte Rückwandlung des rs-AlN in die Niederdruckphase wurde ab 1200 °C (in Argon) bzw. 1100 °C (im Vakuum) bei einer Heizrate von 10 K/min beobachtet. Eine gute chemische Beständigkeit des Aluminiumnitrid mit Kochsalzstruktur gegenüber Wasser, Natronlauge und Säuren (HCl, H2SO4, H3PO4, HNO3 und Königswasser) wurde in Langzeit-Löslichkeitsversuchen nachgewiesen. / In the present work the results of the synthesis and characterisation of the high-pressure phase of aluminium nitride with rocksalt structure (rs-AlN) are presented. The experiments were carried out with the flyer-plate-method with subsequently sample recovery. For different aluminium nitride powders with starting porosities k = rho_solid/rho_porous of 1.5 to 2.5 the phase transition from wurtzite structure (w-AlN) to the rocksalt structure (rs-AlN) was induced at a pressure of 15 to 43 GPa. This is to our knowledge the first succesful synthesis of rs-AlN with dynamic HP-HT methods. With this advance, samples in the milligram or gram range can be produced. Therefore further investigations to characterise the material are possible, especially the study of the mechanical, thermal and chemical stability to validate the potential for the production of ultrahard composites. The shocked samples consist of a phase mixture from the starting material (w-AlN), the high-pressure phase (rs-AlN), aluminium oxide and oxynitrides, as well as amorphous aluminium hydroxides. The highest yield of rs-AlN (~41 wt% at 2 mm sample height) can be obtained at a pressure of 24 GPa and a starting porosity k of 2.1. The shock temperature can be estimated by the formation of different Al-O-N phases (<1700 °C to <2000 °C). The phase transition is activated by the raise of temperature due to shock compression. A thermal activated reconversion to the low-pressure phase w-AlN caused by a high post-shock temperature and a slow cooling of the sample is postulated as a contrary process. This results in an optimum temperature of 1700 to 1900 °C for this set-up. A decrease of the sample height increases the influence of multiple reflections and therefore causes a better transformation. A partial conversion to rs-AlN was observed for three nanopowders (crystallite size <25 nm), whereas for a more coarse nanopowder and an submicronpowder (crystallite size >45 nm) no rs-AlN could be found in the shocked samples. A stabilisation mechanism of the rocksalt phase by crystallite size effects is predicted. The reduction of the crystallite size causes a decrease of the transition pressure for w-AlN -> rs-AlN. It can be concluded, that for smaller particles the high-pressure phase can be stabilised at ambient conditions on the basis of the smaller distance from equilibrium, whereas for larger particles the reconversion to the low-pressure phase occurs. By a Rietveld refinement of the X-ray diffractograms, the lattice constant of rs-AlN and the crystallite size was determined to be a = 4.044 ± 0.001 Å respectively 15.3 ± 0.2 nm. The crystallite size of rs-AlN (10 to 20 nm) determined with high-resolution transmission electron microscopy (TEM) is in good agreement with the results of the Rietveld refinement. The octahedral Al–Npolyhedral (AlN6) was demonstrated by 27Al nuclear magnetic resonance spectroscopy (NMR) with a corrected chemical shift of 2 ppm. Based on infrared spectroscopy (FTIR) an AlN vibration band at about 490 cm−1 is assumed. Dynamic thermal analysis show, that the rs-AlN starts to oxidise to alumina at 600 °C and thus have no greater resistance in comparison with w-AlN. The thermal activated reconversion of rs-AlN to the low-pressure phase starts at 1200 °C (in argon) respectively 1100 °C (under vacuum) at a heating rate of 10 K/min. The aluminium nitride with rocksalt structure shows a good chemical resistance against water, caustic soda and acids (HCl, H2SO4, H3PO4, HNO3 and aqua regia).
10

Experimentelle und theoretische Untersuchungen der Dissoziationen von Tetrafluorethen, Hexafluorpropen und Hexafluorcyclopropan / Experimental and theoretical analysis of the dissociation of tetrafluoroethene, hexafluoropropene and hexafluorocyclopropane

Sölter, Lars 27 June 2014 (has links)
No description available.

Page generated in 0.0534 seconds