• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Power control in energy-harvesting small cell networks: application of stochastic game

Tran, Thuc 12 1900 (has links)
Energy harvesting in cellular networks is an emerging technique to enhance the sus- tainability of power-constrained wireless devices. In this thesis, I consider the co- channel deployment of a macrocell overlaid with several small cells. In our model, the small cell base stations (SBSs) harvest their energy from environment sources (e.g., solar, wind, thermal) whereas the macrocell base station (MBS) uses conven- tional power supply. Given a stochastic energy arrival process, a power control policy for the downlink transmission of both MBS and SBSs is derived such that they can obtain their own objectives on a long-term basis (e.g., maintain the target signal-to- interference-plus-noise ratio [SINR] on a given transmission channel). To this end, I propose to use two di erent forms of stochastic game for the cases when the number of SBSs is small and when it becomes very large i.e. a very dense network. Numerical results demonstrate the signi cance of the developed optimal power control policy in both cases over the conventional methods.
2

Controlled Semi-Markov Processes With Partial Observation

Goswami, Anindya 03 1900 (has links) (PDF)
No description available.
3

Optimisation stochastique avec contraintes en probabilités et applications / Chance constrained problem and its applications

Peng, Shen 17 June 2019 (has links)
L'incertitude est une propriété naturelle des systèmes complexes. Les paramètres de certains modèles peuvent être imprécis; la présence de perturbations aléatoires est une source majeure d'incertitude pouvant avoir un impact important sur les performances du système. Dans cette thèse, nous étudierons les problèmes d’optimisation avec contraintes en probabilités dans les cas suivants : Tout d’abord, nous passons en revue les principaux résultats relatifs aux contraintes en probabilités selon trois perspectives: les problèmes liés à la convexité, les reformulations et les approximations de ces contraintes, et le cas de l’optimisation distributionnellement robuste. Pour les problèmes d’optimisation géométriques, nous étudions les programmes avec contraintes en probabilités jointes. A l’aide d’hypothèses d’indépendance des variables aléatoires elliptiquement distribuées, nous déduisons une reformulation des programmes avec contraintes géométriques rectangulaires jointes. Comme la reformulation n’est pas convexe, nous proposons de nouvelles approximations convexes basées sur la transformation des variables ainsi que des méthodes d’approximation linéaire par morceaux. Nos résultats numériques montrent que nos approximations sont asymptotiquement serrées. Lorsque les distributions de probabilité ne sont pas connues à l’avance, le calcul des bornes peut être très utile. Par conséquent, nous développons quatre bornes supérieures pour les contraintes probabilistes individuelles, et jointes dont les vecteur-lignes de la matrice des contraintes sont indépendantes. Sur la base des inégalités de Chebyshev, Chernoff, Bernstein et de Hoeffding, nous proposons des approximations déterministes. Des conditions suffisantes de convexité. Pour réduire la complexité des calculs, nous reformulons les approximations sous forme de problèmes d'optimisation convexes solvables basés sur des approximations linéaires et tangentielles par morceaux. Enfin, des expériences numériques sont menées afin de montrer la qualité des approximations étudiées sur des données aléatoires. Dans certains systèmes complexes, la distribution des paramètres aléatoires n’est que partiellement connue. Pour traiter les incertitudes dans ces cas, nous proposons un ensemble d'incertitude basé sur des données obtenues à partir de distributions mixtes. L'ensemble d'incertitude est construit dans la perspective d'estimer simultanément des moments d'ordre supérieur. Ensuite, nous proposons une reformulation du problème robuste avec contraintes en probabilités en utilisant des données issues d’échantillonnage. Comme la reformulation n’est pas convexe, nous proposons des approximations convexes serrées basées sur la méthode d’approximation linéaire par morceaux sous certaines conditions. Pour le cas général, nous proposons une approximation DC pour dériver une borne supérieure et une approximation convexe relaxée pour dériver une borne inférieure pour la valeur de la solution optimale du problème initial. Enfin, des expériences numériques sont effectuées pour montrer que les approximations proposées sont efficaces. Nous considérons enfin un jeu stochastique à n joueurs non-coopératif. Lorsque l'ensemble de stratégies de chaque joueur contient un ensemble de contraintes linéaires stochastiques, nous modélisons ces contraintes sous la forme de contraintes en probabilité jointes. Pour chaque joueur, nous formulons les contraintes en probabilité dont les variables aléatoires sont soit normalement distribuées, soit elliptiquement distribuées, soit encore définies dans le cadre de l’optimisation distributionnellement robuste. Sous certaines conditions, nous montrons l’existence d’un équilibre de Nash pour ces jeux stochastiques. / Chance constrained optimization is a natural and widely used approaches to provide profitable and reliable decisions under uncertainty. And the topics around the theory and applications of chance constrained problems are interesting and attractive. However, there are still some important issues requiring non-trivial efforts to solve. In view of this, we will systematically investigate chance constrained problems from the following perspectives. As the basis for chance constrained problems, we first review some main research results about chance constraints in three perspectives: convexity of chance constraints, reformulations and approximations for chance constraints and distributionally robust chance constraints. For stochastic geometric programs, we formulate consider a joint rectangular geometric chance constrained program. With elliptically distributed and pairwise independent assumptions for stochastic parameters, we derive a reformulation of the joint rectangular geometric chance constrained programs. As the reformulation is not convex, we propose new convex approximations based on the variable transformation together with piecewise linear approximation methods. Our numerical results show that our approximations are asymptotically tight. When the probability distributions are not known in advance or the reformulation for chance constraints is hard to obtain, bounds on chance constraints can be very useful. Therefore, we develop four upper bounds for individual and joint chance constraints with independent matrix vector rows. Based on the one-side Chebyshev inequality, Chernoff inequality, Bernstein inequality and Hoeffding inequality, we propose deterministic approximations for chance constraints. In addition, various sufficient conditions under which the aforementioned approximations are convex and tractable are derived. To reduce further computational complexity, we reformulate the approximations as tractable convex optimization problems based on piecewise linear and tangent approximations. Finally, based on randomly generated data, numerical experiments are discussed in order to identify the tight deterministic approximations. In some complex systems, the distribution of the random parameters is only known partially. To deal with the complex uncertainties in terms of the distribution and sample data, we propose a data-driven mixture distribution based uncertainty set. The data-driven mixture distribution based uncertainty set is constructed from the perspective of simultaneously estimating higher order moments. Then, with the mixture distribution based uncertainty set, we derive a reformulation of the data-driven robust chance constrained problem. As the reformulation is not a convex program, we propose new and tight convex approximations based on the piecewise linear approximation method under certain conditions. For the general case, we propose a DC approximation to derive an upper bound and a relaxed convex approximation to derive a lower bound for the optimal value of the original problem, respectively. We also establish the theoretical foundation for these approximations. Finally, simulation experiments are carried out to show that the proposed approximations are practical and efficient. We consider a stochastic n-player non-cooperative game. When the strategy set of each player contains a set of stochastic linear constraints, we model the stochastic linear constraints of each player as a joint chance constraint. For each player, we assume that the row vectors of the matrix defining the stochastic constraints are pairwise independent. Then, we formulate the chance constraints with the viewpoints of normal distribution, elliptical distribution and distributionally robustness, respectively. Under certain conditions, we show the existence of a Nash equilibrium for the stochastic game.
4

Design and analysis of common control channels in cognitive radio ad hoc networks

Lo, Brandon Fang-Hsuan 13 January 2014 (has links)
Common control channels in cognitive radio (CR) ad hoc networks are spectrum resources temporarily allocated and commonly available to CR users for control message exchange. With no presumably available network infrastructure, CR users rely on cooperation to perform spectrum management functions. One the one hand, CR users need to cooperate to establish common control channels, but on the other hand, they need to have common control channels to facilitate such cooperation. This control channel problem is further complicated by primary user (PU) activities, channel impairments, and intelligent attackers. Therefore, how to reliably and securely establish control links in CR ad hoc networks is a challenging problem. In this work, a framework for control channel design and analysis is proposed to address control channel reliability and security challenges for seamless communication and spectral efficiency in CR ad hoc networks. The framework tackles the problem from three perspectives: (i) responsiveness to PU activities: an efficient recovery control channel method is devised to efficiently establish control links and extend control channel coverage upon PU's return while mitigating the interference with PUs, (ii) robustness to channel impairments: a reinforcement learning-based cooperative sensing method is introduced to improve cooperative gain and mitigate cooperation overhead, and (iii) resilience to jamming attacks: a jamming-resilient control channel method is developed to combat jamming under the impacts of PU activities and spectrum sensing errors by leveraging intrusion defense strategies. This research is particularly attractive to emergency relief, public safety, military, and commercial applications where CR users are highly likely to operate in spectrum-scarce or hostile environment.

Page generated in 0.0813 seconds