• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funktionen av stokastisk musik i datorspel : En undersökning av stokastiskt rekombinerad musiks påverkan i spelet Thunder League / The function of stochastic music in computer games : A study on the influence of stochastically recombined music in the game Thunder League

Engström, Victor January 2016 (has links)
Denna studies syfte var att undersöka om det finns någon skillnad i hur stokastiskt rekombinerad musik upplevs jämfört med linjär musik i datorspelet Thunder League (2015, Hellion Studios). Åtta informanter spelade två olika versioner av spelet, en med stokastiskt rekombinerad och en med linjär uppspelning av samma musik. Därefter intervjuades de om sin upplevelse och vilka skillnader de lade märke till mellan versionerna. Resultatet på undersökning visar att informanterna oftare tyckte att den stokastiskt rekombinerade musiken var bättre än den linjära. Resultatet visade också att informanterna inte överväldigande upplevde någon av metoderna mindre repetitiv. Frågan skulle kunna undersökas igen för att säkerställa resultaten igenom till exempel en större undersökning med tillhandahållande av spelet och formulär över internet för att på ett mer resurseffektivt sätt nå ut till fler människor.
2

On the Aubry-Mather theory for partial differential equations and the stability of stochastically forced ordinary differential equations

Blass, Timothy James 01 June 2011 (has links)
This dissertation is organized into four chapters: an introduction followed by three chapters, each based on one of three separate papers. In Chapter 2 we consider gradient descent equations for energy functionals of the type [mathematical equation] where A is a second-order uniformly elliptic operator with smooth coefficients. We consider the gradient descent equation for S, where the gradient is an element of the Sobolev space H[superscipt beta], [beta is an element of](0, 1), with a metric that depends on A and a positive number [gamma] > sup |V₂₂|. The main result of Chapter 2 is a weak comparison principle for such a gradient flow. We extend our methods to the case where A is a fractional power of an elliptic operator, and we provide an application to the Aubry-Mather theory for partial differential equations and pseudo-differential equations by finding plane-like minimizers of the energy functional. In Chapter 3 we investigate the differentiability of the minimal average energy associated to the functionals [mathematical equation] using numerical and perturbation methods. We use the Sobolev gradient descent method as a numerical tool to compute solutions of the Euler-Lagrange equations with some periodicity conditions; this is the cell problem in homogenization. We use these solutions to determine the minimal average energy as a function of the slope. We also obtain a representation of the solutions to the Euler-Lagrange equations as a Lindstedt series in the perturbation parameter [epsilon], and use this to confirm our numerical results. Additionally, we prove convergence of the Lindstedt series. In Chapter 4 we present a method for determining the stability of a class of stochastically forced ordinary differential equations, where the forcing term can be obtained by passing white noise through a filter of arbitrarily high degree. We use the Fokker-Planck equation to write a partial differential equation for the second moments, which we turn into an eigenvalue problem for a second-order differential operator. We develop ladder operators to determine analytic expressions for the eigenvalues and eigenfunctions of this differential operator, and thus determine the stability. / text
3

Evolution of cooperation in evolutionary games with the opting-out strategy and under random environmental noise

Li, Cong 07 1900 (has links)
Dans cette thèse, nous étudions les effets d'un environnement stochastique et de l'utilisation d'une stratégie d'opting-out sur l'évolution de la coopération dans les jeux évolutionnaires. La thèse contient 8 articles, dont 6 sont déjà publiés dans des revues avec comité de lecture. Outre l'introduction, la thèse est divisée en deux parties, la partie 1 composée de 5 articles et la partie 2 de 3 articles. La partie 1 étudie l'impact de gains randomisés dans les jeux évolutionnaires. L'article 1 introduit les concepts de stabilité pour les jeux avec matrice de paiement aléatoire 2x2 dans des populations infinies avec des générations discrètes sans chevauchement dans un environnement stochastique. On y donne les conditions pour qu'un équilibre, sur la frontière ou à l'intérieur du simplexe des fréquences des stratégies, soit stochastiquement localement stable ou instable. L'article 2 étend les résultats de l'article 1 au cas où la valeur sélective est une fonction exponentielle du gain attendu suite à des interactions aléatoires par paires et montre que, de manière inattendue, le bruit aléatoire environnemental peut rompre un cycle périodique et favoriser la stabilité d'un équilibre intérieur. L'article 3 discute des effets de la sélection faible. Alors que les conditions de stabilité dans un environnement aléatoire reviennent aux conditions du cas déterministe lorsque l'intensité de la sélection diminue, les fluctuations aléatoires des gains peuvent accélérer la vitesse de convergence vers un équilibre stable sous une sélection plus faible. L'article 4 applique la théorie de la stabilité évolutive stochastique à un jeu randomisé de dilemme du prisonnier. On y montre que l'augmentation de la variance des gains de défection est propice à l'évolution de la coopération. L'article 5 étudie les jeux matriciels randomisés dans des populations finies et donne les conditions pour que la sélection favorise l'évolution de la coopération dans le contexte du jeu randomisé de dilemme du prisonnier. La partie 2 considère un jeu répété de dilemme du prisonnier dans le cas où un comportement d'opting-out est adopté par chaque joueur dans les interactions par paires. L'article 6 étudie la dynamique évolutive de la coopération et de la défection dans ce contexte et montre une possible coexistence à long terme, en supposant une population infinie et un équilibre rapide (en fait, instantané) dans les fréquences des paires. L'article 7 rapporte des résultats expérimentaux avec 264 étudiants universitaires utilisant la stratégie d'opting-out qui soutiennent la prédiction théorique d'une coexistence à long terme de coopération et de défection. L'article 8 étend l'analyse du modèle avec la stratégie d'opting-out au cas d'une population finie et fournit une preuve rigoureuse des deux échelles de temps pour les fréquences de coopération et de défection d'une part et les fréquences de paires de stratégies d'autre part. / In this thesis, we study the effects of a stochastic environment and the use of an opting-out strategy on the evolution of cooperation in evolutionary games. The thesis contains 8 articles, among which 6 are already published in peer-reviewed journals. Apart from the introduction, the thesis is divided into two parts, Part 1 made with 5 articles and Part 2 with 3 articles. Part 1 studies randomized payoffs in evolutionary games. Article 1 introduces stability concepts for 2x2 matrix games in infinite populations undergoing discrete, non-overlapping generations in a stochastic environment and gives conditions for an equilibrium, either on the boundary or in the interior of the simplex of all strategy frequencies, to be stochastically locally stable or unstable. Article 2 extends the results of Article 1 to the case where fitness is an exponential function of expected payoff in random pairwise interactions and shows that, unexpectedly, environmental random noise can break a periodic cycle and promote stability of an interior equilibrium. Article 3 discusses the effects of weak selection. While stability conditions in a random environment return to conditions in the deterministic case as selection intensity diminishes, random fluctuations in payoffs can accelerate the speed of convergence toward a stable equilibrium under weaker selection. Article 4 applies stochastic evolutionary stability theory to a randomized Prisoner's dilemma game and shows that increasing the variance in payoffs for defection is conducive to the evolution of cooperation. Article 5 studies randomized matrix games in finite populations and gives conditions for selection to favor the evolution of cooperation in the context of a randomized Prisoner's dilemma. Part 2 considers a repeated Prisoner's dilemma game with an opting-out behavior adopted by every player in pairwise interactions. Article 6 studies the evolutionary dynamics of cooperation and defection in this context and shows possible long-term coexistence, assuming an infinite population and fast (actually, instantaneous) equilibrium in the pair frequencies. Article 7 reports experimental results with 264 university students using the opting-out strategy that support the theoretical prediction of a long-term coexistence of cooperation and defection. Article 8 extends the analysis of the model with the opting-out strategy to the case of a finite population and provides a rigorous proof of the two-time scales for the frequencies of cooperation and defection on one hand and the frequencies of strategy pairs on the other.
4

Nonequilibrium statistical mechanics of a crystal interacting with medium / Mécanique statistique hors d'équilibre d'un cristal interagissant avec un milieu continu

Dymov, Andrey 17 June 2015 (has links)
Dans cette thèse nous étudions des systèmes hamiltoniens de particules en interaction, où chaque particule est faiblement couplée avec son propre thermostat de type Langevin de température positive arbitraire. Les modèles peuvent être vu comme des cristaux plongés dans un milieu continue et interagissants faiblement avec ce dernier.Nous nous intéressons au transport d'énergie dans les systèmes quand les couplages des particules avec leurs thermostats tendent vers zéro simultanément avec les couplages entre eux.Nous examinons deux situations opposées, quand la mesure de Lebesgue des resonances du système de particules découplées est nulle et quand elle est pleine. Dans le premier cas, en utilisant la méthode de moyennisation stochastique, nous démontrons que dans la limite ci-dessus le comportement de l'énergie locale des particules sur des intervalles de temps longs, et dans le régime stationnaire est donné par une équation autonome stochastique, laquelle predit uniquement le transport d'énergie non hamiltonien.Dans le second cas, en utilisant la méthode de moyennisation resonante stochastique, nous prouvons que la dynamique limite de l'énergie locale est contrôlée par une équation efficace stochastique. La dernière prevoit le transport d'energie hamiltonien entre les particules. Cependant, elle n'est pas autonome pour l'énergie locale. En utilisant cette asymptotique, nous montrons que dans la limite ci-dessus le flux d'énergie hamiltonien du système satisfait des relations qui ressemblent à la loi de Fourier et à la formule de Green-Kubo (cependant, elles ne le sont pas).La plupart des résultats et convergences que nous obtenons dans la thèse sont uniformes par rapport au nombre de particules dans les systèmes, qui rend nos résultats pertinents du point de vue de la physique statistique. / In the present thesis we study Hamiltonian systems of particles with weak nearest-neighbour interaction, where each particle is weakly coupled with its own stochastic Langevin-type thermostat of arbitrary positive temperature.The models can be seen as crystals plugged in some medium and weakly interacting with it.We are interested in the energy transport through the systems when the couplings of the particles with the thermostats go to zero simultaneously with their couplings with each other.We investigate two opposite situations, when resonances of the system of uncoupled particles have Lebesgue measure zero and when they are of full Lebesgue measure.In the first case, using the method of stochastic averaging, we prove that under the limit above behaviour of the local energy of particles on long time intervals and in a stationary regime is given by an autonomous stochastic equation, which does not provide any Hamiltonian energy transport.For the second situation, using the method of resonant stochastic averaging, we show that the limiting dynamics of the local energy is governed by a stochastic effective equation. The latter provides Hamiltonian energy transport between the particles, however, is not an autonomous equation for the local energy. Using this asymptotics, we prove that under the limit above the Hamiltonian energy flow in the system satisfies some relations which resemble the Fourier law and the Green-Kubo formula (however, which are not).Most of results and convergences obtained in the thesis are uniform with respect to the number of particles in the systems, what makes our results relevant from the point of view of statistical physics.
5

Methods For Forward And Inverse Problems In Nonlinear And Stochastic Structural Dynamics

Saha, Nilanjan 11 1900 (has links)
A main thrust of this thesis is to develop and explore linearization-based numeric-analytic integration techniques in the context of stochastically driven nonlinear oscillators of relevance in structural dynamics. Unfortunately, unlike the case of deterministic oscillators, available numerical or numeric-analytic integration schemes for stochastically driven oscillators, often modelled through stochastic differential equations (SDE-s), have significantly poorer numerical accuracy. These schemes are generally derived through stochastic Taylor expansions and the limited accuracy results from difficulties in evaluating the multiple stochastic integrals. We propose a few higher-order methods based on the stochastic version of transversal linearization and another method of linearizing the nonlinear drift field based on a Girsanov change of measures. When these schemes are implemented within a Monte Carlo framework for computing the response statistics, one typically needs repeated simulations over a large ensemble. The statistical error due to the finiteness of the ensemble (of size N, say)is of order 1/√N, which implies a rather slow convergence as N→∞. Given the prohibitively large computational cost as N increases, a variance reduction strategy that enables computing accurate response statistics for small N is considered useful. This leads us to propose a weak variance reduction strategy. Finally, we use the explicit derivative-free linearization techniques for state and parameter estimations for structural systems using the extended Kalman filter (EKF). A two-stage version of the EKF (2-EKF) is also proposed so as to account for errors due to linearization and unmodelled dynamics. In Chapter 2, we develop higher order locally transversal linearization (LTL) techniques for strong and weak solutions of stochastically driven nonlinear oscillators. For developing the higher-order methods, we expand the non-linear drift and multiplicative diffusion fields based on backward Euler and Newmark expansions while simultaneously satisfying the original vector field at the forward time instant where we intend to find the discretized solution. Since the non-linear vector fields are conditioned on the solution we wish to determine, the methods are implicit. We also report explicit versions of such linearization schemes via simple modifications. Local error estimates are provided for weak solutions. Weak linearized solutions enable faster computation vis-à-vis their strong counterparts. In Chapter 3, we propose another weak linearization method for non-linear oscillators under stochastic excitations based on Girsanov transformation of measures. Here, the non-linear drift vector is appropriately linearized such that the resulting SDE is analytically solvable. In order to account for the error in replacing of non-linear drift terms, the linearized solutions are multiplied by scalar weighting function. The weighting function is the solution of a scalar SDE(i.e.,Radon-Nikodym derivative). Apart from numerically illustrating the method through applications to non-linear oscillators, we also use the Girsanov transformation of measures to correct the truncation errors in lower order discretizations. In order to achieve efficiency in the computation of response statistics via Monte Carlo simulation, we propose in Chapter 4 a weak variance reduction strategy such that the ensemble size is significantly reduced without seriously affecting the accuracy of the predicted expectations of any smooth function of the response vector. The basis of the variance reduction strategy is to appropriately augment the governing system equations and then weakly replace the associated stochastic forcing functions through variance-reduced functions. In the process, the additional computational cost due to system augmentation is generally far less besides the accrued advantages due to a drastically reduced ensemble size. The variance reduction scheme is illustrated through applications to several non-linear oscillators, including a 3-DOF system. Finally, in Chapter 5, we exploit the explicit forms of the LTL techniques for state and parameters estimations of non-linear oscillators of engineering interest using a novel derivative-free EKF and a 2-EKF. In the derivative-free EKF, we use one-term, Euler and Newmark replacements for linearizations of the non-linear drift terms. In the 2-EKF, we use bias terms to account for errors due to lower order linearization and unmodelled dynamics in the mathematical model. Numerical studies establish the relative advantages of EKF-DLL as well as 2-EKF over the conventional forms of EKF. The thesis is concluded in Chapter 6 with an overall summary of the contributions made and suggestions for future research.

Page generated in 0.0819 seconds