• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 12
  • 3
  • Tagged with
  • 43
  • 18
  • 15
  • 14
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Zweistrom-Methoden zur Simulation photochemisch relevanter Strahlung in Vegetationsbeständen

Otto, Sebastian, Trautmann, Thomas 27 January 2017 (has links) (PDF)
Der Strahlungstransport (ST) in hoher Vegetation kann unter bestimmten Voraussetzungen analytisch beschrieben werden. Es sollen sogenannte Zweistrom-Modelle zur Simulation des spektralen aktinischen Flusses (AF) sowie der Photolyseraten (PR) verschiedener Spezies in Vegetation eingesetzt werden. Unter Vorgabe von Vegetationseigenschaften (Blattstreuung, Blattnormalenverteilung, Blattflächendichte etc.) können verschiedene Zweistrom-Verfahren eingeführt werden, die den Strahlungstransport vertikal aufgelöst modellieren. Dabei führt für den untersuchten Laub-Mischwald (hauptsächlich Buchen) bereits die einfache Annahme rein horizontal ausgerichteter Blätter (rein vertikale Blattnormalen) zum Erfolg: Der gemessene abwärtsgerichtete spektrale AF kann zufriedenstellend reproduziert werden, sofern bedeutsame Vegetationslücken im Kronenbereich unberücksichtigt bleiben, durch die diffuses und direktes Licht ohne Wechselwirkung mit der Vegetation zum Waldboden vordringen kann, um so den unteren Vegetationsbereich zu erhellen. / The radiation transfer in vegetation can be desribed analytically if certain assumptions are introduced. So-called two-stream methods for the simulation of the actinic flux (AF) and photolysis rates (PR) of several species in vegetation are considered. By the input of vegetation properties (leaf scattering, leaf normal distribution, leaf area density etc.) variants of two-stream methods can be introduced, which model the vertically resolved radiation field. In the case of a deciduous forest the assumption of only horizontal oriented leaves (only vertical leaf normals) already leads to good results: The measured downward spectral AF can be reproduced satisfactorily as long as significant gaps in the vegetation canopy can be left out of consideration which directly lead to an illumination of the lower layers of the vegetation.
12

Potential of high resolution remote sensing data for leaf area index derivation using statistical and physical models / Potenzial hochaufgelöster Fernerkundungsdaten für die Ableitung des Blattflächenindex aus statistischen und physikalischen Modellen

Asam, Sarah January 2014 (has links) (PDF)
Information on the state of the terrestrial vegetation cover is important for several ecological, economical, and planning issues. In this regard, vegetation properties such as the type, vitality, or density can be described by means of continuous biophysical parameters. One of these parameters is the leaf area index (LAI), which is defined as half the total leaf area per unit ground surface area. As leaves constitute the interface between the biosphere and the atmosphere, the LAI is used to model exchange processes between plants and their environment. However, to account for the variability of ecosystems, spatially and temporally explicit information on LAI is needed both for monitoring and modeling applications. Remote sensing aims at providing such information. LAI is commonly derived from remote sensing data by empirical-statistical or physical models. In the first approach, an empirical relationship between LAI measured in situ and the corresponding canopy spectral signature is established. Although this method achieves accurate LAI estimates, these relationships are only valid for the place and time at which the field data were sampled, which hampers automated LAI derivation. The physical approach uses a radiation transfer model to simulate canopy reflectance as a function of the scene’s geometry and of leaf and canopy parameters, from which LAI is derived through model inversion based on remote sensing data. However, this model inversion is not stable, as it is an under-determined and ill-posed problem. Until now, LAI research focused either on the use of coarse resolution remote sensing data for global applications, or on LAI modeling over a confined area, mostly in forest and crop ecosystems, using medium to high spatial resolution data. This is why to date no study is available in which high spatial resolution data are used for LAI mapping in a heterogeneous, natural landscape such as alpine grasslands, although a growing amount of high spatial and temporal resolution remote sensing data would allow for an improved environmental monitoring. Therefore, issues related to model parameterization and inversion regularization techniques improving its stability have not yet been investigated for this ecosystem. This research gap was taken up by this thesis, in which the potential of high spatial resolution remote sensing data for grassland LAI estimation based on statistical and radiation transfer modeling is analyzed, and the achieved accuracy and robustness of the two approaches is compared. The objectives were an ecosystem-adapted radiation transfer model set-up and an optimized LAI derivation in mountainous grassland areas. Multi-temporal LAI in situ measurements as well as time series of RapidEye data from 2011 and 2012 over the catchment of the River Ammer in the Bavarian alpine upland were used. In order to obtain accurate in situ data, a comparison of the LAI derivation algorithms implemented in the LAI-2000 PCA instrument with destructively measured LAI was performed first. For optimizing the empirical-statistical approach, it was then analyzed how the selection of vegetation indices and regression models impacts LAI modeling, and how well these models can be transferred to other dates. It was shown that LAI can be derived with a mean accuracy of 80 % using contemporaneous field data, but that the accuracy decreases to on average 51 % when using these models on remote sensing data from other dates. The combined use of several data sets to create a regression which is used for LAI derivation at different points in time increased the LAI estimation accuracy to on average 65 %. Thus, reduced field measurement labor comes at the cost of LAI error rates being increased by 10 - 30 % as long as at least two campaigns are conducted. Further, it was shown that the use of RapidEye’s red edge channel improves the LAI derivation by on average 5.4 %. With regard to physical LAI modeling, special interest lay in assessing the accuracy improvements that can be achieved through model set-up and inversion regularization techniques. First, a global sensitivity analysis was applied to the radiation transfer model in order to identify the most important model parameters and most sensitive spectral features. After model parameterization, several inversion regularizations, namely the use of a multiple sample solution, the additional use of vegetation indices, and the addition of noise, were analyzed. Further, an approach to include the local scene’s geometry in the retrieval process was introduced to account for the mountainous topography. LAI modeling accuracies of in average 70 % were achieved using the best combination of regularization techniques, which is in the upper range of accuracies that were achieved in the few existing other grassland studies based on in situ or air-borne measured hyperspectral data. Finally, further physically derived vegetation parameters and inversion uncertainty measures were evaluated in detail to identify challenging modeling conditions, which was mostly neglected in other studies. An increased modeling uncertainty for extremely high and low LAI values was observed. This indicates an insufficiently wide model parameterization and a canopy deviation from model assumptions on some fields. Further, the LAI modeling accuracies varied strongly between the different scenes. From this observation it can be deduced that the radiometric quality of the remote sensing data, which might be reduced by atmospheric effects or unexpected surface reflectances, exerts a high influence on the LAI modeling accuracy. The major findings of the comparison between the empirical-statistical and physical LAI modeling approaches are the higher accuracies achieved by the empirical-statistical approach as long as contemporaneous field data are available, and the computationally efficiency of the statistical approach. However, when no or temporally unfitting in situ measurements are available, the physical approach achieves comparable or even higher accuracies. Furthermore, radiation transfer modeling enables the derivation of other leaf and canopy variables useful for ecological monitoring and modeling applications, as well as of pixel-wise uncertainty measures indicating the robustness and reliability of the model inversion and LAI derivation procedure. The established look-up tables can be used for further LAI derivation in Central European grassland also in other years. The use of high spatial resolution remote sensing data for LAI derivation enables a reliable land cover classification and thus a reduced LAI mapping error due to misclassifications. Furthermore, the RapidEye pixels being smaller than individual fields allow for a radiation transfer model inversion over homogeneous canopies in most cases, as canopy gaps or field parcels can be clearly distinguished. However, in case of unexpected local surface conditions such as blooming, litter, or canopy gaps, high spatial resolution data show corresponding strong deviations in reflectance values and hence LAI estimation, which would be reduced using coarser resolution data through the balancing effect of the surrounding surface reflectances. An optimal pixel size with regard to modeling accuracy hence depends on the canopy and landscape structure. Furthermore, a reduced spatial resolution would enable a considerable acceleration of the LAI map derivation. This illustration of the potential of RapidEye data and of the challenges associated to LAI derivation in heterogeneous grassland areas contributes to the development of robust LAI estimation procedures based on new and upcoming, spatially and temporally high resolution remote sensing imagery such as Landsat 8 and Sentinel-2. / Informationen zum Zustand der Vegetation sind relevant für einige ökologische, ökonomische, und planerische Fragestellungen. Vegetationseigenschaften wie der Typ, die Vitalität oder die Dichte einer Pflanzendecke können dabei anhand von kontinuierlichen biophysikalischen Parametern beschrieben werden. Einer dieser Parameter ist der Blattflächenindex (engl. leaf area index, LAI), der als die halbe gesamte Blattoberfläche pro Bodenoberfläche definiert ist. Da die Blattfläche eine wichtige Schnittstelle zwischen der Biosphäre und der Atmosphäre darstellt, wird der LAI dazu verwendet, Austauschprozesse zwischen Pflanzen und ihrer Umwelt zu modellieren. Um die natürliche Variabilität von Ökosystemen berücksichtigen zu können, benötigt man für solche Monitoring- und Modellierungsanwendungen jedoch räumlich und zeitlich explizite LAI Informationen. Die Fernerkundung stellt solche Informationen zur Verfügung. Fernerkundungsbasierte LAI-Kartierung basiert auf empirisch-statistischen und physikalischen Modellen. Im ersten Ansatz wird ein empirisches Verhältnis zwischen dem aufgezeichneten Reflexionssignal der Vegetationsdecke und in situ gemessenem LAI erstellt. Obwohl dieses Verfahren meist hohe Genauigkeiten erzielt, gilt das erstellte Verhältnis nur für den Ort und Zeitpunkt der Feldmessungen, was ein automatisiertes Verfahren behindert. Der physikalische Ansatz verwendet ein Strahlungstransfermodell um die spektrale Signatur einer Pflanzendecke in Abhängigkeit von der Szenengeometrie und verschiedenen Blatt- und Pflanzenparametern zu simulieren, von der LAI durch die Inversion des Modells basierend auf Fernerkundungsdaten abgeleitet wird. Die Modellinversion ist jedoch nicht stabil, da sie ein unterdeterminiertes und inkorrekt gestelltes Problem ist. Bisher fokussierten LAI-Studien entweder auf die Verwendung räumlich grob ausgelöster Fernerkundungsdaten für globale Anwendungen, oder auf LAI-Modellierung für Wälder und Anbaufrüchte innerhalb eines räumlich eingeschränkten Gebiets basierend auf mittel und hoch aufgelösten Daten. Obwohl die Menge an räumlich und zeitlich hoch aufgelösten Fernerkundungsdaten für ein verbessertes Umweltmonitoring kontinuierlich zunimmt, führte dies dazu, dass es keine Studie gibt die sich mit der Ableitung des LAI in heterogenen Landschaften wie beispielsweise alpinem Grünland, basierend auf räumlich hoch aufgelösten Daten, beschäftigen. Dementsprechend wurden damit verbundene Aspekte wie die Modellparametrisierung und Regularisierungsmöglichkeiten der Inversion für dieses Ökosystem noch nicht untersucht. Diesem Forschungsbedarf wird mit dieser Arbeit, in der das Potenzial räumlich hoch aufgelöster Fernerkundungsdaten für die Ableitung von Grünland-LAI basierend auf statistischen Modellen und Strahlungstransfermodellierung analysiert wird, und in der die Genauigkeiten und Stabilität beider Verfahren verglichen werden, begegnet. Die Ziele der Arbeit sind eine an das Grünlandökosystem angepasste Einrichtung des Strahlungstransfermodells und die Ableitung des LAI für Grünland im Gebirgsraum. Multitemporale in situ LAI-Messungen sowie RapidEye-Zeitreihen aus den Jahren 2011 und 2012 aus dem Ammereinzugsgebiet im bayrischen Voralpenland wurden dazu verwendet. Um verlässliche in situ Messwerte zu erhalten, wurde zunächst ein Vergleich der im LAI-2000 PCA Messinstrument implementierten Algorithmen mit destruktiv erhobenen LAI Werten durchgeführt. Zur Optimierung des empirisch-statistischen Ansatzes wurde dann untersucht, in welchem Maße die Verwendung verschiedener Vegetationsindizes und Regressionsmodelle die LAI-Modellierung beeinflussen, und wie gut diese Modelle auf andere Zeitpunkte übertragen werden können. Es wurde gezeigt, dass unter Verwendung von zeitgleich erhobenen Felddaten der LAI mit einer mittleren Genauigkeit von 80 % abgeleitet werden kann, dass sich die Genauigkeit aber auf 51 % verringert, wenn die Modelle auf Fernerkundungsdaten anderer Zeitpunkte angewendet werden. Die gemeinsame Nutzung mehrerer Felddatensätze zur Erstellung einer Regression welche auf andere Zeitpunkte angewendet wird, erhöhte die Genauigkeit der LAI-Ableitung wiederum auf durchschnittlich 65 %. Ein verringerter Arbeitsaufwand für Feldmessungen wird also durch erhöhte Fehlerraten von 10 - 30 % pro Szene ausgewogen, solange mindestens zwei Messkampagnen durchgeführt werden. Außerdem wurde gezeigt, dass die Verwendung des “red edge” Bandes des RapidEye Sensors die LAI-Ableitung um im Mittel 5.4 % verbessert. Im Hinblick auf die physikalische LAI-Modellierung waren vor allem die Verbesserung der Genauigkeit, die anhand von Modelleinstellungen und Regularisierungstechniken erzielt werden konnten, von Interesse. Zunächst wurde eine globale Sensitivitätsanalyse des Strahlungstransfermodells durchgeführt, um die wichtigsten Modellparameter und die sensitivsten spektralen Bereiche zu identifizieren. Nach der darauf basierenden Modellparametrisierung wurden in den nächsten Schritten mehrere Verfahren zu Stabilisierung der Inversion, nämlich die Verwendung multipler Lösungen, von Vegetationsindizes als Inputdaten, und von simuliertem Datenrauschen, analysiert. Außerdem wurde ein Ansatz eingeführt, der die Berücksichtigung der lokalen Szenengeometrien, und damit der Topographie des Untersuchungsgebietes, erlaubt. Genauigkeiten von im Mittel 70 % konnten für die LAI-Modellierung unter Verwendung der besten Modell- und Inversionseinstellungen erreicht werden. Diese sind mit den Ergebnissen anderer Grünland-Studien, die jedoch auf in situ oder flugzeuggetragen gemessenen hyperspektralen Daten beruhen, vergleichbar. Zuletzt wurden weitere physikalisch modellierte Vegetationsparameter sowie Inversionsunsicherheitsmaße evaluiert, um besonders schwierige Modellierungsbedingungen zu identifizieren, was in anderen Studien bisher meist vernachlässigt wurde. Erhöhte Modellierungsunsicherheiten wurden für die Ableitung besonders niedriger und hoher LAI Werte beobachtet, was auf eine ungenügend weit gefasste Modellparametrisierung und stellenweise Abweichungen der Vegetationsdecke von den Modellannahmen hinweist. Außerdem variieren die Genauigkeiten der LAI Modellierung stark zwischen den einzelnen Szenen woraus abgeleitet werden kann dass die radiometrische Qualität der Fernerkundungsdaten, welche beispielsweise durch atmosphärische Effekte oder unerwartete Oberflächenreflexionen beeinfluss werten kann, einen großen Einfluss auf die Modellierungsgenauigkeit hat. Im Vergleich der empirisch-statistischen und physikalischen LAI-Modellierung fiel der empirisch-statistische Ansatz mit höheren Genauigkeiten, solange zeitgleich aufgenommene Felddaten vorliegen, sowie mit einer geringeren Berechnungszeit auf. Wenn jedoch keine zeitlich passenden Felddaten vorhanden sind, erreicht die physikalische Modellierung vergleichbare oder sogar höhere Genauigkeiten. Des Weiteren ermöglicht das Strahlungstransfermodel die Ableitung weiterer Blatt- und Pflanzeneigenschaften, welche für ökologische Monitoring- und Modellierungsanwendungen nützlich sind. Außerdem werden pixelgenaue Unsicherheitsmaße generiert, welche die Stabilität und Verlässlichkeit der Modellinversion und des gewonnenen LAI-Wertes charakterisieren. Die erstellten Datenbanken können darüber hinaus für die LAI-Modellierung in anderen Mitteleuropäischen Grünländern auch in anderen Jahren verwendet werden. Die Verwendung von hochaufgelösten Fernerkundungsdaten ermöglicht eine verlässliche Landbedeckungsklassifikation und verringert damit Fehler in der LAI-Modellierung die durch Fehlklassifikationen verursacht werden. Da die RapidEye-Pixel außerdem kleiner als einzelnen Felder sind, konnte das Strahlungstransfermodell in den meisten Fällen über homogenen Pflanzendecken invertiert werden. Angesichts unerwarteter lokaler Oberflächenreflexionen, hervorgerufen beispielsweise durch Blüten, Streu, oder Lücken, zeigen die hochaufgelösten Daten jedoch auch entsprechend starke Abweichungen, welche in gröber aufgelösten Daten durch die Reflexion der umgebenden Oberflächen verringert sind. Eine optimale Pixelgröße im Hinblick auf die Modellierungsgenauigkeit hängt also von der Struktur der Vegetationsdecke und der Landschaft ab. Eine verringerte Pixelgröße würde darüber hinaus die Ableitung von LAI-Karten deutlich beschleunigen. Diese Darstellung des Potenzials von RapidEye Daten für LAI-Modellierung und der speziellen Herausforderungen an die genutzten Verfahren in heterogenen Grünländern kann zur Entwicklung von robusten LAI-Ableitungsverfahren beitragen, anhand welcher neue, räumlich und zeitlich hoch aufgelöste, Fernerkundungsdaten wie die der Landsat 8 oder Sentinel-2 Sensoren in Wert gesetzt werden können.
13

Simulationen kosmischer Röntgenquellen

Weth, Christopher. January 2002 (has links)
Tübingen, Univ., Diss., 2002.
14

Photon pathlengths distributions for cloudy skies oxygen A-band measurements and radiative transfer model calculations /

Funk, Oliver. Unknown Date (has links) (PDF)
University, Diss., 2000--Heidelberg.
15

Derivation of trace gas information combining differential optical absorption spectroscopy with radiative transfer modelling

Friedeburg, Christoph von. Unknown Date (has links) (PDF)
University, Diss., 2003--Heidelberg.
16

Modellierung dreidimensionaler Strahlungsfelder im frühen Universum

Meinköhn, Erik. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Heidelberg.
17

Development and application of a versatile balloon-borne DOAS spectrometer for skylight radiance and atmospheric trace gas profile measurements

Weidner, Frank. Unknown Date (has links) (PDF)
University, Diss., 2005--Heidelberg.
18

Simulations of solar radiative transfer in measured and generated cloud fields

Gimeno García, Sebastián, Trautmann, Thomas 27 January 2017 (has links) (PDF)
Um ein besseres Verständnis des Einflusses von Wolken auf den Strahlungstransport zu erlangen, müssen neben direkten Messungen der Strahlungsgrößen auch Strahlungstransportrechnungen durchgeführt werden. Dabei werden mikrophysikalische Eigenschaften aus Fernerkundungs- und in situ Messungen sowie generierte Wolkenfelder verwendet. In den BBC1- und BBC2 (= Baltex Bridge Cloud 1 und 2)-Messkampagnen wurden Messungen der mikrophysikalischen Wolkeneigenschaften und der Strahlungsgrößen durchgeführt. In diesem Bericht werden Ergebnisse von spektralen Monte Carlo Simulationen des Strahlungstransports in der Kurzwellenregion für Wellenlängen zwischen 350 nm und 850 nm für einen in BBC1 gemessenen Stratocumulus gezeigt. Zusätzlich wurden auch Strahlungstransportssimulationen für einen LES (= Large Eddy Simulation)- simulierten Cumulus und für eine entsprechende IAAFT (= Iterative Amplitude Adapted Fourier Transform)-Surrogatwolke mit denselben statistischen Eigenschaften wie die ursprüngliche Wolke durchgeführt. / For a better understanding of the role that clouds play in the radiative transfer (RT) across the atmosphere, computer RT simulations with microphysical data retrieved from remote sensing and in situ measurements as well as with cloud fields provided by cloud generators have to be carried out in addition to field measurements campaigns. In this work we show spectral RT results for two cloud studies. During the BBC1 and BBC2 (=Baltex Bridge Cloud 1 and 2) campaigns measurements of cloud radiation and microphysics properties have been performed. We present here the results of a series of quasi-spectral simulations covering the shortwave region (from 350 nm up to 850 nm) for a remote-sensing captured stratocumulus. RT calculations have also been carried out for a LES (=Large Eddy Simulation) cumulus and an IAAFT (=Iterative Amplitude Adapted Fourier Transform) surrogate cloud with the same statistics as the original.
19

A polarized discrete ordinate scattering model for radiative transfer simulations in spherical atmospheres with thermal source

Emde, Claudia January 2005 (has links) (PDF)
Zugl.: Bremen, Univ., Diss., 2005
20

The SARTre model for radiative transfer in spherical atmospheres and its application to the derivation of cirrus cloud properties /

Mendrok, Jana. January 2006 (has links)
Zugl.: Berlin, Freie University, Diss., 2006.

Page generated in 0.1639 seconds