• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 9
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Potential of high resolution remote sensing data for leaf area index derivation using statistical and physical models / Potenzial hochaufgelöster Fernerkundungsdaten für die Ableitung des Blattflächenindex aus statistischen und physikalischen Modellen

Asam, Sarah January 2014 (has links) (PDF)
Information on the state of the terrestrial vegetation cover is important for several ecological, economical, and planning issues. In this regard, vegetation properties such as the type, vitality, or density can be described by means of continuous biophysical parameters. One of these parameters is the leaf area index (LAI), which is defined as half the total leaf area per unit ground surface area. As leaves constitute the interface between the biosphere and the atmosphere, the LAI is used to model exchange processes between plants and their environment. However, to account for the variability of ecosystems, spatially and temporally explicit information on LAI is needed both for monitoring and modeling applications. Remote sensing aims at providing such information. LAI is commonly derived from remote sensing data by empirical-statistical or physical models. In the first approach, an empirical relationship between LAI measured in situ and the corresponding canopy spectral signature is established. Although this method achieves accurate LAI estimates, these relationships are only valid for the place and time at which the field data were sampled, which hampers automated LAI derivation. The physical approach uses a radiation transfer model to simulate canopy reflectance as a function of the scene’s geometry and of leaf and canopy parameters, from which LAI is derived through model inversion based on remote sensing data. However, this model inversion is not stable, as it is an under-determined and ill-posed problem. Until now, LAI research focused either on the use of coarse resolution remote sensing data for global applications, or on LAI modeling over a confined area, mostly in forest and crop ecosystems, using medium to high spatial resolution data. This is why to date no study is available in which high spatial resolution data are used for LAI mapping in a heterogeneous, natural landscape such as alpine grasslands, although a growing amount of high spatial and temporal resolution remote sensing data would allow for an improved environmental monitoring. Therefore, issues related to model parameterization and inversion regularization techniques improving its stability have not yet been investigated for this ecosystem. This research gap was taken up by this thesis, in which the potential of high spatial resolution remote sensing data for grassland LAI estimation based on statistical and radiation transfer modeling is analyzed, and the achieved accuracy and robustness of the two approaches is compared. The objectives were an ecosystem-adapted radiation transfer model set-up and an optimized LAI derivation in mountainous grassland areas. Multi-temporal LAI in situ measurements as well as time series of RapidEye data from 2011 and 2012 over the catchment of the River Ammer in the Bavarian alpine upland were used. In order to obtain accurate in situ data, a comparison of the LAI derivation algorithms implemented in the LAI-2000 PCA instrument with destructively measured LAI was performed first. For optimizing the empirical-statistical approach, it was then analyzed how the selection of vegetation indices and regression models impacts LAI modeling, and how well these models can be transferred to other dates. It was shown that LAI can be derived with a mean accuracy of 80 % using contemporaneous field data, but that the accuracy decreases to on average 51 % when using these models on remote sensing data from other dates. The combined use of several data sets to create a regression which is used for LAI derivation at different points in time increased the LAI estimation accuracy to on average 65 %. Thus, reduced field measurement labor comes at the cost of LAI error rates being increased by 10 - 30 % as long as at least two campaigns are conducted. Further, it was shown that the use of RapidEye’s red edge channel improves the LAI derivation by on average 5.4 %. With regard to physical LAI modeling, special interest lay in assessing the accuracy improvements that can be achieved through model set-up and inversion regularization techniques. First, a global sensitivity analysis was applied to the radiation transfer model in order to identify the most important model parameters and most sensitive spectral features. After model parameterization, several inversion regularizations, namely the use of a multiple sample solution, the additional use of vegetation indices, and the addition of noise, were analyzed. Further, an approach to include the local scene’s geometry in the retrieval process was introduced to account for the mountainous topography. LAI modeling accuracies of in average 70 % were achieved using the best combination of regularization techniques, which is in the upper range of accuracies that were achieved in the few existing other grassland studies based on in situ or air-borne measured hyperspectral data. Finally, further physically derived vegetation parameters and inversion uncertainty measures were evaluated in detail to identify challenging modeling conditions, which was mostly neglected in other studies. An increased modeling uncertainty for extremely high and low LAI values was observed. This indicates an insufficiently wide model parameterization and a canopy deviation from model assumptions on some fields. Further, the LAI modeling accuracies varied strongly between the different scenes. From this observation it can be deduced that the radiometric quality of the remote sensing data, which might be reduced by atmospheric effects or unexpected surface reflectances, exerts a high influence on the LAI modeling accuracy. The major findings of the comparison between the empirical-statistical and physical LAI modeling approaches are the higher accuracies achieved by the empirical-statistical approach as long as contemporaneous field data are available, and the computationally efficiency of the statistical approach. However, when no or temporally unfitting in situ measurements are available, the physical approach achieves comparable or even higher accuracies. Furthermore, radiation transfer modeling enables the derivation of other leaf and canopy variables useful for ecological monitoring and modeling applications, as well as of pixel-wise uncertainty measures indicating the robustness and reliability of the model inversion and LAI derivation procedure. The established look-up tables can be used for further LAI derivation in Central European grassland also in other years. The use of high spatial resolution remote sensing data for LAI derivation enables a reliable land cover classification and thus a reduced LAI mapping error due to misclassifications. Furthermore, the RapidEye pixels being smaller than individual fields allow for a radiation transfer model inversion over homogeneous canopies in most cases, as canopy gaps or field parcels can be clearly distinguished. However, in case of unexpected local surface conditions such as blooming, litter, or canopy gaps, high spatial resolution data show corresponding strong deviations in reflectance values and hence LAI estimation, which would be reduced using coarser resolution data through the balancing effect of the surrounding surface reflectances. An optimal pixel size with regard to modeling accuracy hence depends on the canopy and landscape structure. Furthermore, a reduced spatial resolution would enable a considerable acceleration of the LAI map derivation. This illustration of the potential of RapidEye data and of the challenges associated to LAI derivation in heterogeneous grassland areas contributes to the development of robust LAI estimation procedures based on new and upcoming, spatially and temporally high resolution remote sensing imagery such as Landsat 8 and Sentinel-2. / Informationen zum Zustand der Vegetation sind relevant für einige ökologische, ökonomische, und planerische Fragestellungen. Vegetationseigenschaften wie der Typ, die Vitalität oder die Dichte einer Pflanzendecke können dabei anhand von kontinuierlichen biophysikalischen Parametern beschrieben werden. Einer dieser Parameter ist der Blattflächenindex (engl. leaf area index, LAI), der als die halbe gesamte Blattoberfläche pro Bodenoberfläche definiert ist. Da die Blattfläche eine wichtige Schnittstelle zwischen der Biosphäre und der Atmosphäre darstellt, wird der LAI dazu verwendet, Austauschprozesse zwischen Pflanzen und ihrer Umwelt zu modellieren. Um die natürliche Variabilität von Ökosystemen berücksichtigen zu können, benötigt man für solche Monitoring- und Modellierungsanwendungen jedoch räumlich und zeitlich explizite LAI Informationen. Die Fernerkundung stellt solche Informationen zur Verfügung. Fernerkundungsbasierte LAI-Kartierung basiert auf empirisch-statistischen und physikalischen Modellen. Im ersten Ansatz wird ein empirisches Verhältnis zwischen dem aufgezeichneten Reflexionssignal der Vegetationsdecke und in situ gemessenem LAI erstellt. Obwohl dieses Verfahren meist hohe Genauigkeiten erzielt, gilt das erstellte Verhältnis nur für den Ort und Zeitpunkt der Feldmessungen, was ein automatisiertes Verfahren behindert. Der physikalische Ansatz verwendet ein Strahlungstransfermodell um die spektrale Signatur einer Pflanzendecke in Abhängigkeit von der Szenengeometrie und verschiedenen Blatt- und Pflanzenparametern zu simulieren, von der LAI durch die Inversion des Modells basierend auf Fernerkundungsdaten abgeleitet wird. Die Modellinversion ist jedoch nicht stabil, da sie ein unterdeterminiertes und inkorrekt gestelltes Problem ist. Bisher fokussierten LAI-Studien entweder auf die Verwendung räumlich grob ausgelöster Fernerkundungsdaten für globale Anwendungen, oder auf LAI-Modellierung für Wälder und Anbaufrüchte innerhalb eines räumlich eingeschränkten Gebiets basierend auf mittel und hoch aufgelösten Daten. Obwohl die Menge an räumlich und zeitlich hoch aufgelösten Fernerkundungsdaten für ein verbessertes Umweltmonitoring kontinuierlich zunimmt, führte dies dazu, dass es keine Studie gibt die sich mit der Ableitung des LAI in heterogenen Landschaften wie beispielsweise alpinem Grünland, basierend auf räumlich hoch aufgelösten Daten, beschäftigen. Dementsprechend wurden damit verbundene Aspekte wie die Modellparametrisierung und Regularisierungsmöglichkeiten der Inversion für dieses Ökosystem noch nicht untersucht. Diesem Forschungsbedarf wird mit dieser Arbeit, in der das Potenzial räumlich hoch aufgelöster Fernerkundungsdaten für die Ableitung von Grünland-LAI basierend auf statistischen Modellen und Strahlungstransfermodellierung analysiert wird, und in der die Genauigkeiten und Stabilität beider Verfahren verglichen werden, begegnet. Die Ziele der Arbeit sind eine an das Grünlandökosystem angepasste Einrichtung des Strahlungstransfermodells und die Ableitung des LAI für Grünland im Gebirgsraum. Multitemporale in situ LAI-Messungen sowie RapidEye-Zeitreihen aus den Jahren 2011 und 2012 aus dem Ammereinzugsgebiet im bayrischen Voralpenland wurden dazu verwendet. Um verlässliche in situ Messwerte zu erhalten, wurde zunächst ein Vergleich der im LAI-2000 PCA Messinstrument implementierten Algorithmen mit destruktiv erhobenen LAI Werten durchgeführt. Zur Optimierung des empirisch-statistischen Ansatzes wurde dann untersucht, in welchem Maße die Verwendung verschiedener Vegetationsindizes und Regressionsmodelle die LAI-Modellierung beeinflussen, und wie gut diese Modelle auf andere Zeitpunkte übertragen werden können. Es wurde gezeigt, dass unter Verwendung von zeitgleich erhobenen Felddaten der LAI mit einer mittleren Genauigkeit von 80 % abgeleitet werden kann, dass sich die Genauigkeit aber auf 51 % verringert, wenn die Modelle auf Fernerkundungsdaten anderer Zeitpunkte angewendet werden. Die gemeinsame Nutzung mehrerer Felddatensätze zur Erstellung einer Regression welche auf andere Zeitpunkte angewendet wird, erhöhte die Genauigkeit der LAI-Ableitung wiederum auf durchschnittlich 65 %. Ein verringerter Arbeitsaufwand für Feldmessungen wird also durch erhöhte Fehlerraten von 10 - 30 % pro Szene ausgewogen, solange mindestens zwei Messkampagnen durchgeführt werden. Außerdem wurde gezeigt, dass die Verwendung des “red edge” Bandes des RapidEye Sensors die LAI-Ableitung um im Mittel 5.4 % verbessert. Im Hinblick auf die physikalische LAI-Modellierung waren vor allem die Verbesserung der Genauigkeit, die anhand von Modelleinstellungen und Regularisierungstechniken erzielt werden konnten, von Interesse. Zunächst wurde eine globale Sensitivitätsanalyse des Strahlungstransfermodells durchgeführt, um die wichtigsten Modellparameter und die sensitivsten spektralen Bereiche zu identifizieren. Nach der darauf basierenden Modellparametrisierung wurden in den nächsten Schritten mehrere Verfahren zu Stabilisierung der Inversion, nämlich die Verwendung multipler Lösungen, von Vegetationsindizes als Inputdaten, und von simuliertem Datenrauschen, analysiert. Außerdem wurde ein Ansatz eingeführt, der die Berücksichtigung der lokalen Szenengeometrien, und damit der Topographie des Untersuchungsgebietes, erlaubt. Genauigkeiten von im Mittel 70 % konnten für die LAI-Modellierung unter Verwendung der besten Modell- und Inversionseinstellungen erreicht werden. Diese sind mit den Ergebnissen anderer Grünland-Studien, die jedoch auf in situ oder flugzeuggetragen gemessenen hyperspektralen Daten beruhen, vergleichbar. Zuletzt wurden weitere physikalisch modellierte Vegetationsparameter sowie Inversionsunsicherheitsmaße evaluiert, um besonders schwierige Modellierungsbedingungen zu identifizieren, was in anderen Studien bisher meist vernachlässigt wurde. Erhöhte Modellierungsunsicherheiten wurden für die Ableitung besonders niedriger und hoher LAI Werte beobachtet, was auf eine ungenügend weit gefasste Modellparametrisierung und stellenweise Abweichungen der Vegetationsdecke von den Modellannahmen hinweist. Außerdem variieren die Genauigkeiten der LAI Modellierung stark zwischen den einzelnen Szenen woraus abgeleitet werden kann dass die radiometrische Qualität der Fernerkundungsdaten, welche beispielsweise durch atmosphärische Effekte oder unerwartete Oberflächenreflexionen beeinfluss werten kann, einen großen Einfluss auf die Modellierungsgenauigkeit hat. Im Vergleich der empirisch-statistischen und physikalischen LAI-Modellierung fiel der empirisch-statistische Ansatz mit höheren Genauigkeiten, solange zeitgleich aufgenommene Felddaten vorliegen, sowie mit einer geringeren Berechnungszeit auf. Wenn jedoch keine zeitlich passenden Felddaten vorhanden sind, erreicht die physikalische Modellierung vergleichbare oder sogar höhere Genauigkeiten. Des Weiteren ermöglicht das Strahlungstransfermodel die Ableitung weiterer Blatt- und Pflanzeneigenschaften, welche für ökologische Monitoring- und Modellierungsanwendungen nützlich sind. Außerdem werden pixelgenaue Unsicherheitsmaße generiert, welche die Stabilität und Verlässlichkeit der Modellinversion und des gewonnenen LAI-Wertes charakterisieren. Die erstellten Datenbanken können darüber hinaus für die LAI-Modellierung in anderen Mitteleuropäischen Grünländern auch in anderen Jahren verwendet werden. Die Verwendung von hochaufgelösten Fernerkundungsdaten ermöglicht eine verlässliche Landbedeckungsklassifikation und verringert damit Fehler in der LAI-Modellierung die durch Fehlklassifikationen verursacht werden. Da die RapidEye-Pixel außerdem kleiner als einzelnen Felder sind, konnte das Strahlungstransfermodell in den meisten Fällen über homogenen Pflanzendecken invertiert werden. Angesichts unerwarteter lokaler Oberflächenreflexionen, hervorgerufen beispielsweise durch Blüten, Streu, oder Lücken, zeigen die hochaufgelösten Daten jedoch auch entsprechend starke Abweichungen, welche in gröber aufgelösten Daten durch die Reflexion der umgebenden Oberflächen verringert sind. Eine optimale Pixelgröße im Hinblick auf die Modellierungsgenauigkeit hängt also von der Struktur der Vegetationsdecke und der Landschaft ab. Eine verringerte Pixelgröße würde darüber hinaus die Ableitung von LAI-Karten deutlich beschleunigen. Diese Darstellung des Potenzials von RapidEye Daten für LAI-Modellierung und der speziellen Herausforderungen an die genutzten Verfahren in heterogenen Grünländern kann zur Entwicklung von robusten LAI-Ableitungsverfahren beitragen, anhand welcher neue, räumlich und zeitlich hoch aufgelöste, Fernerkundungsdaten wie die der Landsat 8 oder Sentinel-2 Sensoren in Wert gesetzt werden können.
2

Ableitung von Blattflächenindex und Bedeckungsgrad aus Fernerkundungsdaten für das Erosionsmodell EROSION 3D

Klisch, Anja January 2003 (has links)
In den letzten Jahren wurden relativ komplexe Erosionsmodelle entwickelt, deren Teilprozesse immer mehr auf physikalisch begründeten Ansätzen beruhen. Damit verbunden ist eine höhere Anzahl aktueller Eingangsparameter, deren Bestimmung im Feld arbeits- und kostenaufwendig ist. Zudem werden die Parameter punktuell, also an bestimmten Stellen und nicht flächenhaft wie bei der Fernerkundung, erfasst. <br /> <br /> Im Rahmen dieser Arbeit wird gezeigt, wie Satellitendaten als relativ kostengünstige Ergänzung oder Alternative zur konventionellen Parametererhebung genutzt werden können. Dazu werden beispielhaft der Blattflächenindex (LAI) und der Bedeckungsgrad für das physikalisch begründete Erosionsmodell EROSION 3D abgeleitet. Im Mittelpunkt des Interesses steht dabei das Aufzeigen von existierenden Methoden, die die Basis für eine operationelle Bereitstellung solcher Größen nicht nur für Erosions- sondern allgemein für Prozessmodelle darstellen. Als Untersuchungsgebiet dient das primär landwirtschaftlich genutzte Einzugsgebiet des Mehltheuer Baches, das sich im Sächsischen Lößgefilde befindet und für das Simulationsrechnungen mit konventionell erhobenen Eingangsparametern für 29 Niederschlagsereignisse im Jahr 1999 vorliegen [MICHAEL et al. 2000].<br /> <br /> Die Fernerkundungsdatengrundlage bilden Landsat-5-TM-Daten vom 13.03.1999, 30.04.1999 und 19.07.1999. Da die Vegetationsparameter für alle Niederschlagsereignisse vorliegen sollen, werden sie basierend auf der Entwicklung des LAI zeitlich interpoliert. Dazu erfolgt zunächst die Ableitung des LAI für alle vorhandenen Fruchtarten nach den semi-empirischen Modellen von CLEVERS [1986] und BARET & GUYOT [1991] mit aus der Literatur entnommenen Koeffizienten. Des Weiteren wird eine Methode untersucht, nach der die Koeffizienten für das Clevers-Modell aus den TM-Daten und einem vereinfachten Wachstumsmodell bestimmt werden. Der Bedeckungsgrad wird nach ROSS [1981] aus dem LAI ermittelt. Die zeitliche Interpolation des LAI wird durch die schlagbezogene Anpassung eines vereinfachten Wachstumsmodells umgesetzt, das dem hydrologischen Modell SWIM [KRYSANOVA et al. 1999] entstammt und in das durchschnittliche Tagestemperaturen eingehen. Mit den genannten Methoden bleiben abgestorbene Pflanzenteile unberücksichtigt. Im Vergleich zur konventionellen terrestrischen Parametererhebung ermöglichen sie eine differenziertere Abbildung räumlicher Variabilitäten und des zeitlichen Verlaufes der Vegetationsparameter.<br /> <br /> Die Simulationsrechnungen werden sowohl mit den direkten Bedeckungsgraden aus den TM-Daten (pixelbezogen) als auch mit den zeitlich interpolierten Bedeckungsgraden für alle Ereignisse (schlagbezogen) durchgeführt. Bei beiden Vorgehensweisen wird im Vergleich zur bisherigen Abschätzung eine Verbesserung der räumlichen Verteilung der Parameter und somit eine räumliche Umverteilung von Erosions- und Depositionsflächen erreicht. Für die im Untersuchungsgebiet vorliegende räumliche Heterogenität (z. B. Schlaggröße) bieten Landsat-TM-Daten eine ausreichend genaue räumliche Auflösung. Damit wird nachgewiesen, dass die satellitengestützte Fernerkundung im Rahmen dieser Untersuchungen sinnvoll einsetzbar ist. Für eine operationelle Bereitstellung der Parameter mit einem vertretbaren Aufwand ist es erforderlich, die Methoden weiter zu validieren und möglichst weitestgehend zu automatisieren. / Soil erosion models become increasingly more complex and contain physically based components, resulting in changing requirements for their input parameters. The spatial and temporal dynamics of erosions forcing parameters thus produce high requirements on data availability (costs and manpower). Due to this fact, the use of complex erosion models for extensive regions is strongly limited by the high in-situ expense. Moreover, conventional measurement procedures provide parameters at certain points, while remote sensing is a two-dimensional retrieval method.<br /> <br /> This thesis demonstrates, how satellite data can be used as a cost-effective supplementation or alternative to conventional measurement procedures. Leaf area index (LAI) and soil cover percentage are examplarily derived for the EROSION 3D physically based soil erosion model. The main objective of this study is to summarise existing retrieval methods in order to operationally provide such paramaters for soil erosion models or for process models in general. The methods are applied to a catchment in the loess region in Saxony (Germany), that predominantly is agriculturally used. For comparison, simulations based on conventionally estimated parameters for 29 rainstorm events are available [MICHAEL et al. 2000]. <br /> <br /> The remote sensing parameters are derived from Landsat 5 TM data on the following dates: 13.03.1999, 30.04.1999, 19.07.1999. To get temporally continuous data for all events, they are interpolated between the acquisition dates based on the LAI development. Therefore, LAI is firstly calculated for all occurring crops by means of the semi-empirical models of CLEVERS [1986] and BARET & GUYOT [1991]. The coefficients appropriated to these models are taken from literature. Furthermore, a method is investigated that enables coefficient estimation for the Clevers model from Landsat data combined with a simplified growth model. Next, soil cover percentage is derived from LAI after ROSS [1981]. The LAI interpolation is performed by the simplified crop growth model from the SWIM hydrological model [Krysanova et al. 1999]. It has to be mentioned, that plant residue remains unconsidered by the used methods. In comparison to conventional measurement procedures, these methods supply a differentiated mapping of the spatial variability and temporal behaviour regarding the vegetation parameters.<br /> <br /> The simulations with EROSION 3D are carried out for the remotely sensed soil cover percentages, that are retrieved in two ways. Soil cover is directly derived from the remote sensing data for each pixel at the acquisition dates as well as estimated by means of the interpolation for each field on all rainstorm events. In comparison to conventionally determined soil cover, both methods provide an improved spatial allocation of this parameter and thus, a spatial reallocation of erosion and deposition areas. The used Landsat Data provide an adequate spatial resolution suitable for the spatial heterogeneity given in the test area (e. g. field size). These results show that satellite based remote sensing can be reasonably used within the scope of these investigations. In the future, operational retrieval of such remotely sensed parameters necessitates the validation of the proposed methods and in general the automation of involved sub-processes to the greatest possible extent
3

Einfluss von Blattstellung und Bestandesdichte auf Ertrag, Qualität, Lichtaufnahme und Blattflächenindex bei Silomaissorten verschiedenen Wuchstyps

Wang, Szu-Hsien 26 February 2001 (has links)
Im nordostdeutschen Land ist die Zunahme des Ertrages und die Verbesserung der Qualität des Maises eine Folge von Licht, Temperatur und der Länge der Vegetationsperiode. Eine gute Belichtung durch blattreichere Sorten und Standort angepasste Bestandesdichte ist wichtige Voraussetzung für die gute Ertragsleistung des Silomaises. Am Standort Berge (nordostdeutsches Tiefland) sind in den Jahren 1997 und 1998 vier Landessortenversuche (Brandenburg) und zwei Parzellenversuche mit verschiedenen Silomaissorten und Bestandsdichten in die Untersuchungen zum Ertragsniveau, zur Futterqualität und zum Einfluss des Faktors Licht auf die Ertragsbildung bei Silomais einbezogen worden. Es handelte sich im Landessortenversuch um Untersuchungen in den Silomaissortimenten der Reifegruppe "früh" mit 28 Sorten und der Reifegruppe "mittelfrüh" mit 33 Sorten. In ergänzenden Parzellenversuchen ging es um detaillierte Untersuchungen zur Lichtinterzeption und des Blattflächenindexes in Abhängigkeit vom Wuchstyp der Maissorten sowie von der Bestandsdichte. Am Beginn der Untersuchungen standen die Sortenunterschiede bei den Merkmalen Gesamtertrag, Futterqualität (wie Trockensubstanzgehalt, Energiedichte und Stärkegehalt) und Lichtinterzeption im Mittelpunkt. Darauf aufbauend konzentrierten sich die Untersuchungen auf den Einfluss von Sorte und Bestandsdichte auf die vor allem auf den Ertragsparameter Trockenmassebildung in unterschiedlichen Wuchsabschnitten der Maispflanze, Kolbenanteil am Trockenmasseertrag, die Blattflächen, den Blattflächenindex, die Lebensdauer der Blätter und die Lichtaufnahme [wie die Lichtinterzeption, den Lichtextinktionskoeffizienten und die Lichtnutzungseffizienz]. Dazu wurden im Jahre 1998 zwei Parzellenversuche mit je zwei Sorten der Reifegruppen "früh" (Arsenal und Agadir) und "mittelfrüh" (Banguy und Attribut) angelegt. In den zweifaktoriellen Parzellenversuchen wurden bei der Messung der Lichtinterzeption zwei Messgeräte (PhAR-Sensor und LAI-2000) verwendet. Für die Messung des Blattflächenindexes wurde ebenfalls das Messgerät LAI-2000 verwendet. Der Blattflächenindex wurde mit den Ergebnissen aus der manuellen Messung der einzelnen Blätter verglichen. Die Sorten Arsenal und Banguy zeichneten sich durch die höhere Lichtnutzungseffizienz, den größeren Blattflächenindex und die größere Lichtinterzeption aus, was als Grund für den höheren Ertrag angesehen werden kann. Im Jahre 1998 führte die höhere Bestandesdichte von 10 Pflanzen pro qm im Vergleich zu 8 Pflanzen pro qm unter den herrschenden Standortverhältnissen zu keiner Ertragsüberlegenheit und es kam zu schlechteren Qualitätseigenschaften der vier Sorten. Der Unterschied zwischen den Werten des Blattflächenindexes der beiden Messmethoden bei Erreichen des maximalen Blattflächenindexes war kleiner als 14 %. / The higher yield and the better quality of maize depend on light, temperature, water and length of vegetation period in north eastern Germany. A good light interception of maize accompanied with higher leaf area index and plant density adjusted to region is essential for the better maize yield. In 1997 and 1998 four field trials for assessing varieties for the conditions of the federal state Brandenburg (variety trials) and two field experiments with four silage maize varieties and different plant densities in 1998 were carried out at Berge (plain of the north eastern Germany). The yield and the fodder quality of the maize crop (with special emphasis of the light conditions) as well as the effect of light conditions on yield forming out processes were examined. The variety trials included 28 maize varieties of maturity group "early" and 33 maize hybrids of maturity group "middle early". The aim of the two field experiments was to explain the light interception and the leaf area index in dependence of canopy structure and plant density. At the beginning of the variety trials we focused on the differences between the hybrids for maize yield, fodder quality (such as dry matter content, energy concentration and content of starch) and light interception. Closely related experiments were concentrated on the influence of variety and plant density on the yield (dry matter yield within different plant height, cobs weight ratio), development of leaf (leaf area index, leaf area and leaf age) and light absorption (such as light interception, light extinction coefficient and light use efficiency). At these field experiments, to which two hybrids Arsenal and Agadir (maturity group "early") and two hybrids Banguy and Attribut ("middle early") were analysed. In the two-factorial field experiments two devices (ceptometer and LAI-2000) were used to measure the light interception. The leaf area index we obtained from measurement with the LAI-2000 were valued by the leaf area index of individual leafs measured by hand. The hybrids Arsenal and Banguy were characterised by their higher light use efficiency, large leaf area index and higher light interception. These properties seem to be responsible for the higher maize yield. The higher Plant density of 10 plant per sqm for the four varieties compared to 8 plant per sqm resulted in no increase of yield and worse qualities in 1998. The difference between the maximum value of leaf area index of both methods was smaller than 14 %.
4

Spatiotemporal studies of evapotranspiration in Inner Mongolian grasslands

Schaffrath, David 09 June 2015 (has links) (PDF)
Inner Mongolian grasslands are part of the vast Eurasian steppe belt and were used for nomadic pastoralism for thousands of years. As a result of political and economic changes in China in the last century, this mobile grazing management has been replaced by a sedentary and intensified livestock production. Stocking rates have increased substantially, overshooting the carrying capacity of the grasslands. These land use changes have induced severe grassland degradation. The impact and causes of grassland degradation have been investigated by the Sino-German joint research group MAGIM (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate) in the Xilin River catchment of Inner Mongolia since 2004. This work is part of subproject P6, which amongst others pursues the goal of quantifying water balance exchange by micrometeorology and remote sensing. The dominating process of water balance losses in Inner Mongolian grasslands is evapotranspiration (ET), whereby water vapour is released into the lower atmosphere. ET is highly variable in both time and space in this semi-arid environment, as it is coupled with the typically fluctuating amount of precipitation (P). However, despite ET being the key output process of the hydrological cycle of Inner Mongolian grasslands and despite its important role as an indicator for ecosystem functioning, little is known about its spatiotemporal distribution and variability in this remote area. Recent studies on ET have demonstrated variations due to phenology, soil moisture and land use, but these studies have been limited to short periods and have been conducted on a few field sites in close proximity with debatable representativeness for the 2600 km² of grasslands in the Xilin River catchment. The development of a number of remote sensing methods in the last decades has introduced various approaches to determining spatial ET from space, but the application of remotely sensed ET in regional long-term studies is still problematic. Nevertheless, a variety of surface parameters are provided by the sensor MODIS (moderate resolution imaging spectroradiometer) at a resolution of approx. 1km. The aim of this work was (1) to close the gap between the limitations of available local ET measurements and the need for long-term studies on spatial ET in Inner Mongolian grasslands and (2) to analyse the spatiotemporal variability of ET and its implications on livestock management in this area. Therefore, micrometeorological data, remote sensing products and hydrological modelling with BROOK90 were integrated to model spatial ET for the grasslands of the Xilin River catchment over 10 years. The hydrological model BROOK90 calculates ET based on a modified Penman-Monteith approach including the separation of energy into transpiration and soil evaporation. The spatial application of the model was based on a land use classification restricted to the land use unit typical steppe. BROOK90 was parameterised from eddy covariance measurements, soil characteristics and MODIS leaf area index (LAI). Location and canopy parameters were provided individually, as well as the essential daily model input, including P and air temperatures for each pixel. Minimum and maximum air temperatures were calculated based on a relationship between measured air temperatures and MODIS surface temperatures (R²=0.92 and R²=0.87, n=81). Spatial P was estimated from a relationship found between the measured cumulative P of six rain gauges within the grasslands and the increase of MODIS LAI around these measurements (R²=0.80, n=270). Modelled ET is plausible and fits in the range of published results. ET was demonstrated to be highly variable in both time and space: the high spatiotemporal variability of eight-day ET is reflected by the coefficients of variation, which varied between 25% and 40% for the whole study area and were up to 75% for individual pixels. Soil evaporation reacts considerably more sensitively to precipitation pulses than transpiration. Modelled annual ET sums approached or exceeded precipitation sums in general; however, P exceeded ET in 2003, when exceptionally high precipitation occurred. The strong dynamics and the high spatiotemporal variability of ET clearly demonstrate that the current static livestock management is not adapted to the conditions of Inner Mongolian grasslands. New concepts for a sustainable livestock management could be developed in consideration of the intrinsic long-term patterns of spatial ET distribution and spatiotemporal variability identified in this work. Moreover, as this method for modelling spatial ET is not restricted to the grasslands of the Xilin River catchment, livestock management in other semi-arid grasslands could benefit from it as well. / Die Grasländer der Inneren Mongolei sind Teil des riesigen eurasischen Steppengürtels und wurden seit Tausenden von Jahren für die nomadische Weidewirtschaft genutzt. Als Folge der politischen und wirtschaftlichen Veränderungen in China im letzten Jahrhundert ist diese mobile Weidewirtschaft durch eine ortsgebundene und intensivierte Tierhaltung ersetzt worden. Besatzdichten wurden erheblich erhöht und die Tragfähigkeit der Grasländer wurde deutlich überschritten. Diese Landnutzungsänderungen haben schwerwiegende Degradationserscheinungen der Grasländer induziert. Die Ursachen und Auswirkungen der Degradation sind von der Deutsch-Chinesischen-Forschungsgruppe MAGIM (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate) im Einzugsgebiet des Xilin-Flusses in der Inneren Mongolei seit 2004 untersucht worden. Diese Arbeit wurde im Rahmen des Teilprojektes P6 erstellt, welches unter anderem das Ziel verfolgt, Wasserhaushaltsprozesse mit Mikrometeorologie und Fernerkundung zu quantifizieren. Der dominierende Prozess der Wasserbilanz-Verluste in den Grasländern der Inneren Mongolei ist die Verdunstung (ET), wobei Wasserdampf in die untere Atmosphäre freigesetzt wird. ET ist in diesem semi-ariden Ökosystem in Zeit und Raum sehr variabel, da an die in der Regel schwankenden Niederschläge (P) gekoppelt. Trotz der Schlüsselrolle, die ET im Wasserkreislauf der Inneren Mongolei einnimmt, und der wichtigen Rolle als Indikator für die Funktionsweise des Ökosystems, ist wenig über die raum-zeitliche Verteilung und Variabilität von ET in dieser abgelegenen Region bekannt. Neuere Studien haben ET-Schwankungen aufgrund von Phänologie, Bodenfeuchte und Bodennutzung dargestellt, aber diese Studien sind auf kurze Zeiträume beschränkt und wurden auf nur wenigen Standorten, die sich in unmittelbarer Nähe befinden, durchgeführt. Dies stellt ihre Repräsentativität für die 2600 km² an Grasland im Xilin-Einzugsgebiet in Frage. Die Entwicklung von Fernerkundungsmethoden in den letzten Jahrzehnten hat verschiedene Ansätze zur Bestimmung der räumlichen ET hervorgebracht, jedoch ist die Anwendung von ET aus Fernerkundungsdaten in regionalen Langzeitstudien immer noch problematisch. Dennoch werden eine Vielzahl von Oberflächenparametern durch den Sensor MODIS (Moderate Resolution Imaging Spectroradiometer) bei einer Auflösung von ca. 1km zur Verfügung gestellt. Das Ziel dieser Arbeit war (1) die Lücke zwischen den verfügbaren lokalen ET-Messungen und dem Bedarf an langfristigen Untersuchungen zu räumlicher ET im Grasland der Inneren Mongolei zu schließen und (2) die räumlich-zeitliche Variabilität von ET vor dem Hintergrund des Beweidungsmanagements zu analysieren. Daher wurden mikrometeorologische Daten, Fernerkundungsprodukte und hydrologische Modellierungen mit BROOK90 integriert, um die räumliche ET für die Grasländer des Xilin-Einzugsgebietes über 10 Jahre zu modellieren. Das hydrologische Modell BROOK90 berechnet ET auf Basis eines modifizierten Penman-Monteith-Ansatzes einschließlich der Aufteilung in Transpiration und Bodenverdunstung. Die räumliche Anwendung des Standortmodells basiert auf einer Landnutzungsklassifikation und wurde für die Landnutzungsklasse typical steppe durchgeführt. Eddy-Kovarianz-Messungen, Bodeneigenschaften und MODIS-Blattflächenindex (LAI) wurden zur Parametrisierung von BROOK90 verwendet. Sowohl Lage- und Pflanzenparameter, als auch die notwendigen Modelleingangsdaten (Tageswerte von P und Lufttemperaturen), wurden für jeden Pixel individuell zur Verfügung gestellt. Minimum- und Maximum-Lufttemperaturen wurden mittels einer Beziehung zwischen gemessenen Lufttemperaturen und MODIS-Oberflächentemperaturen berechnet (R²=0.92 und R²=0.87, n=81). Räumliche P wurden aus einem Zusammenhang zwischen gemessenen kumulierten P von sechs Niederschlagsmessern im Untersuchungsgebiet und der Erhöhung des MODIS-LAI im Bereich dieser Messungen abgeleitet (R²=0.80, n=270). Die modellierte räumliche ET ist plausibel und liegt im Wertebereich der publizierten Ergebnisse. Es wurde gezeigt, das ET sehr variabel in Raum und Zeit ist: die raum-zeitlichen Schwankungen der achttägigen ET wurden durch den Variationskoeffizienten dargestellt, welcher zwischen 25% und 40% für das gesamte Untersuchungsgebiet variiert und für einzelne Pixel bis auf 75% ansteigt. Die Bodenverdunstung reagiert wesentlich empfindlicher auf Niederschlagsereignisse als die Transpiration. Modellierte Jahres-ET-Summen erreichen oder überschritten die Niederschlagssummen in der Regel, jedoch übertraf P die ET im Jahre 2003, als außergewöhnlich hohe Niederschläge aufgetreten sind. Die starke Dynamik und die hohe raum-zeitliche Variabilität der ET zeigen deutlich, dass die aktuelle statische Tierhaltung nicht an die Bedingungen in den Innermongolischen Grasländern angepasst ist. Neue Konzepte für eine nachhaltige Viehwirtschaft könnten unter Berücksichtigung der inhärenten langfristigen Muster der räumlichen Verteilung von ET und ihrer raum-zeitlichen Variabilität, die in dieser Arbeit identifiziert wurden, entwickelt werden. Außerdem ist die Anwendung der entwickelten Methode für die Modellierung räumlicher ET nicht auf die Grasländer des Xilin-Einzugsgebietes beschränkt; die Weidewirtschaft in anderen semi-ariden Grasländern könnte ebenfalls davon profitieren.
5

Spatiotemporal studies of evapotranspiration in Inner Mongolian grasslands

Schaffrath, David 09 June 2015 (has links)
Inner Mongolian grasslands are part of the vast Eurasian steppe belt and were used for nomadic pastoralism for thousands of years. As a result of political and economic changes in China in the last century, this mobile grazing management has been replaced by a sedentary and intensified livestock production. Stocking rates have increased substantially, overshooting the carrying capacity of the grasslands. These land use changes have induced severe grassland degradation. The impact and causes of grassland degradation have been investigated by the Sino-German joint research group MAGIM (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate) in the Xilin River catchment of Inner Mongolia since 2004. This work is part of subproject P6, which amongst others pursues the goal of quantifying water balance exchange by micrometeorology and remote sensing. The dominating process of water balance losses in Inner Mongolian grasslands is evapotranspiration (ET), whereby water vapour is released into the lower atmosphere. ET is highly variable in both time and space in this semi-arid environment, as it is coupled with the typically fluctuating amount of precipitation (P). However, despite ET being the key output process of the hydrological cycle of Inner Mongolian grasslands and despite its important role as an indicator for ecosystem functioning, little is known about its spatiotemporal distribution and variability in this remote area. Recent studies on ET have demonstrated variations due to phenology, soil moisture and land use, but these studies have been limited to short periods and have been conducted on a few field sites in close proximity with debatable representativeness for the 2600 km² of grasslands in the Xilin River catchment. The development of a number of remote sensing methods in the last decades has introduced various approaches to determining spatial ET from space, but the application of remotely sensed ET in regional long-term studies is still problematic. Nevertheless, a variety of surface parameters are provided by the sensor MODIS (moderate resolution imaging spectroradiometer) at a resolution of approx. 1km. The aim of this work was (1) to close the gap between the limitations of available local ET measurements and the need for long-term studies on spatial ET in Inner Mongolian grasslands and (2) to analyse the spatiotemporal variability of ET and its implications on livestock management in this area. Therefore, micrometeorological data, remote sensing products and hydrological modelling with BROOK90 were integrated to model spatial ET for the grasslands of the Xilin River catchment over 10 years. The hydrological model BROOK90 calculates ET based on a modified Penman-Monteith approach including the separation of energy into transpiration and soil evaporation. The spatial application of the model was based on a land use classification restricted to the land use unit typical steppe. BROOK90 was parameterised from eddy covariance measurements, soil characteristics and MODIS leaf area index (LAI). Location and canopy parameters were provided individually, as well as the essential daily model input, including P and air temperatures for each pixel. Minimum and maximum air temperatures were calculated based on a relationship between measured air temperatures and MODIS surface temperatures (R²=0.92 and R²=0.87, n=81). Spatial P was estimated from a relationship found between the measured cumulative P of six rain gauges within the grasslands and the increase of MODIS LAI around these measurements (R²=0.80, n=270). Modelled ET is plausible and fits in the range of published results. ET was demonstrated to be highly variable in both time and space: the high spatiotemporal variability of eight-day ET is reflected by the coefficients of variation, which varied between 25% and 40% for the whole study area and were up to 75% for individual pixels. Soil evaporation reacts considerably more sensitively to precipitation pulses than transpiration. Modelled annual ET sums approached or exceeded precipitation sums in general; however, P exceeded ET in 2003, when exceptionally high precipitation occurred. The strong dynamics and the high spatiotemporal variability of ET clearly demonstrate that the current static livestock management is not adapted to the conditions of Inner Mongolian grasslands. New concepts for a sustainable livestock management could be developed in consideration of the intrinsic long-term patterns of spatial ET distribution and spatiotemporal variability identified in this work. Moreover, as this method for modelling spatial ET is not restricted to the grasslands of the Xilin River catchment, livestock management in other semi-arid grasslands could benefit from it as well. / Die Grasländer der Inneren Mongolei sind Teil des riesigen eurasischen Steppengürtels und wurden seit Tausenden von Jahren für die nomadische Weidewirtschaft genutzt. Als Folge der politischen und wirtschaftlichen Veränderungen in China im letzten Jahrhundert ist diese mobile Weidewirtschaft durch eine ortsgebundene und intensivierte Tierhaltung ersetzt worden. Besatzdichten wurden erheblich erhöht und die Tragfähigkeit der Grasländer wurde deutlich überschritten. Diese Landnutzungsänderungen haben schwerwiegende Degradationserscheinungen der Grasländer induziert. Die Ursachen und Auswirkungen der Degradation sind von der Deutsch-Chinesischen-Forschungsgruppe MAGIM (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate) im Einzugsgebiet des Xilin-Flusses in der Inneren Mongolei seit 2004 untersucht worden. Diese Arbeit wurde im Rahmen des Teilprojektes P6 erstellt, welches unter anderem das Ziel verfolgt, Wasserhaushaltsprozesse mit Mikrometeorologie und Fernerkundung zu quantifizieren. Der dominierende Prozess der Wasserbilanz-Verluste in den Grasländern der Inneren Mongolei ist die Verdunstung (ET), wobei Wasserdampf in die untere Atmosphäre freigesetzt wird. ET ist in diesem semi-ariden Ökosystem in Zeit und Raum sehr variabel, da an die in der Regel schwankenden Niederschläge (P) gekoppelt. Trotz der Schlüsselrolle, die ET im Wasserkreislauf der Inneren Mongolei einnimmt, und der wichtigen Rolle als Indikator für die Funktionsweise des Ökosystems, ist wenig über die raum-zeitliche Verteilung und Variabilität von ET in dieser abgelegenen Region bekannt. Neuere Studien haben ET-Schwankungen aufgrund von Phänologie, Bodenfeuchte und Bodennutzung dargestellt, aber diese Studien sind auf kurze Zeiträume beschränkt und wurden auf nur wenigen Standorten, die sich in unmittelbarer Nähe befinden, durchgeführt. Dies stellt ihre Repräsentativität für die 2600 km² an Grasland im Xilin-Einzugsgebiet in Frage. Die Entwicklung von Fernerkundungsmethoden in den letzten Jahrzehnten hat verschiedene Ansätze zur Bestimmung der räumlichen ET hervorgebracht, jedoch ist die Anwendung von ET aus Fernerkundungsdaten in regionalen Langzeitstudien immer noch problematisch. Dennoch werden eine Vielzahl von Oberflächenparametern durch den Sensor MODIS (Moderate Resolution Imaging Spectroradiometer) bei einer Auflösung von ca. 1km zur Verfügung gestellt. Das Ziel dieser Arbeit war (1) die Lücke zwischen den verfügbaren lokalen ET-Messungen und dem Bedarf an langfristigen Untersuchungen zu räumlicher ET im Grasland der Inneren Mongolei zu schließen und (2) die räumlich-zeitliche Variabilität von ET vor dem Hintergrund des Beweidungsmanagements zu analysieren. Daher wurden mikrometeorologische Daten, Fernerkundungsprodukte und hydrologische Modellierungen mit BROOK90 integriert, um die räumliche ET für die Grasländer des Xilin-Einzugsgebietes über 10 Jahre zu modellieren. Das hydrologische Modell BROOK90 berechnet ET auf Basis eines modifizierten Penman-Monteith-Ansatzes einschließlich der Aufteilung in Transpiration und Bodenverdunstung. Die räumliche Anwendung des Standortmodells basiert auf einer Landnutzungsklassifikation und wurde für die Landnutzungsklasse typical steppe durchgeführt. Eddy-Kovarianz-Messungen, Bodeneigenschaften und MODIS-Blattflächenindex (LAI) wurden zur Parametrisierung von BROOK90 verwendet. Sowohl Lage- und Pflanzenparameter, als auch die notwendigen Modelleingangsdaten (Tageswerte von P und Lufttemperaturen), wurden für jeden Pixel individuell zur Verfügung gestellt. Minimum- und Maximum-Lufttemperaturen wurden mittels einer Beziehung zwischen gemessenen Lufttemperaturen und MODIS-Oberflächentemperaturen berechnet (R²=0.92 und R²=0.87, n=81). Räumliche P wurden aus einem Zusammenhang zwischen gemessenen kumulierten P von sechs Niederschlagsmessern im Untersuchungsgebiet und der Erhöhung des MODIS-LAI im Bereich dieser Messungen abgeleitet (R²=0.80, n=270). Die modellierte räumliche ET ist plausibel und liegt im Wertebereich der publizierten Ergebnisse. Es wurde gezeigt, das ET sehr variabel in Raum und Zeit ist: die raum-zeitlichen Schwankungen der achttägigen ET wurden durch den Variationskoeffizienten dargestellt, welcher zwischen 25% und 40% für das gesamte Untersuchungsgebiet variiert und für einzelne Pixel bis auf 75% ansteigt. Die Bodenverdunstung reagiert wesentlich empfindlicher auf Niederschlagsereignisse als die Transpiration. Modellierte Jahres-ET-Summen erreichen oder überschritten die Niederschlagssummen in der Regel, jedoch übertraf P die ET im Jahre 2003, als außergewöhnlich hohe Niederschläge aufgetreten sind. Die starke Dynamik und die hohe raum-zeitliche Variabilität der ET zeigen deutlich, dass die aktuelle statische Tierhaltung nicht an die Bedingungen in den Innermongolischen Grasländern angepasst ist. Neue Konzepte für eine nachhaltige Viehwirtschaft könnten unter Berücksichtigung der inhärenten langfristigen Muster der räumlichen Verteilung von ET und ihrer raum-zeitlichen Variabilität, die in dieser Arbeit identifiziert wurden, entwickelt werden. Außerdem ist die Anwendung der entwickelten Methode für die Modellierung räumlicher ET nicht auf die Grasländer des Xilin-Einzugsgebietes beschränkt; die Weidewirtschaft in anderen semi-ariden Grasländern könnte ebenfalls davon profitieren.
6

Elevation Effects on Key Processes of Carbon Cycling in South Ecuadorian Mountain Forests / Der Einfluss der Meereshöhe auf Schlüsselprozesse des Kohlenstoffkreislaufs in Südecuadorianischen Bergregenwäldern

Moser, Gerald 24 January 2008 (has links)
No description available.
7

Site evaluation approach for reforestations based on SVAT water balance modeling considering data scarcity and uncertainty analysis of model input parameters from geophysical data

Mannschatz, Theresa 10 August 2015 (has links) (PDF)
Extensive deforestations, particularly in the (sub)tropics, have led to intense soil degradation and erosion with concomitant reduction in soil fertility. Reforestations or plantations on those degraded sites may provide effective measures to mitigate further soil degradation and erosion, and can lead to improved soil quality. However, a change in land use from, e.g., grassland to forest may have a crucial impact on water balance. This may affect water availability even under humid tropical climate conditions where water is normally not a limiting factor. In this context, it should also be considered that according to climate change projections rainfall may decrease in some of these regions. To mitigate climate change related problems (e.g. increases in erosion and drought), reforestations are often carried out. Unfortunately, those measures are seldom completely successful, because the environmental conditions and the plant specific requirements are not appropriately taken into account. This is often due to data-scarcity and limited financial resources in tropical regions. For this reason, innovative approaches are required that are able to measure environmental conditions quasi-continuously in a cost-effective manner. Simultaneously, reforestation measures should be accompanied by monitoring in order to evaluate reforestation success and to mitigate, or at least to reduce, potential problems associated with reforestation (e.g. water scarcity). To avoid reforestation failure and negative implications on ecosystem services, it is crucial to get insights into the water balance of the actual ecosystem, and potential changes resulting from reforestation. The identification and prediction of water balance changes as a result of reforestation under climate change requires the consideration of the complex feedback system of processes in the soil-vegetation-atmosphere continuum. Models that account for those feedback system are Soil-Vegetation-Atmosphere-Transfer (SVAT) models. For the before-mentioned reasons, this study targeted two main objectives: (i) to develop and test a method combination for site evaluation under data scarcity (i.e. study requirements) (Part I) and (ii) to investigate the consequences of prediction uncertainty of the SVAT model input parameters, which were derived using geophysical methods, on SVAT modeling (Part II). A water balance modeling approach was set at the center of the site evaluation approach. This study used the one-dimensional CoupModel, which is a SVAT model. CoupModel requires detailed spatial soil information for (i) model parameterization, (ii) upscaling of model results and accounting for local to regional-scale soil heterogeneity, and (iii) monitoring of changes in soil properties and plant characteristics over time. Since traditional approaches to soil and vegetation sampling and monitoring are time consuming and expensive (and therefore often limited to point information), geophysical methods were used to overcome this spatial limitation. For this reason, vis-NIR spectroscopy (visible to near-infrared wavelength range) was applied for the measurement of soil properties (physical and chemical), and remote sensing to derive vegetation characteristics (i.e. leaf area index (LAI)). Since the estimated soil properties (mainly texture) could be used to parameterize a SVAT model, this study investigated the whole processing chain and related prediction uncertainty of soil texture and LAI, and their impact on CoupModel water balance prediction uncertainty. A greenhouse experiment with bamboo plants was carried out to determine plant-physiological characteristics needed for CoupModel parameterization. Geoelectrics was used to investigate soil layering, with the intent of determining site-representative soil profiles for model parameterization. Soil structure was investigated using image analysis techniques that allow the quantitative assessment and comparability of structural features. In order to meet the requirements of the selected study approach, the developed methodology was applied and tested for a site in NE-Brazil (which has low data availability) with a bamboo plantation as the test site and a secondary forest as the reference (reference site). Nevertheless, the objective of the thesis was not the concrete modeling of the case study site, but rather the evaluation of the suitability of the selected methods to evaluate sites for reforestations and to monitor their influence on the water balance as well as soil properties. The results (Part III) highlight that one needs to be aware of the measurement uncertainty related to SVAT model input parameters, so for instance the uncertainty of model input parameters such as soil texture and leaf area index influences meaningfully the simulated model water balance output. Furthermore, this work indicates that vis-NIR spectroscopy is a fast and cost-efficient method for soil measurement, mapping, and monitoring of soil physical (texture) and chemical (N, TOC, TIC, TC) properties, where the quality of soil prediction depends on the instrument (e.g. sensor resolution), the sample properties (i.e. chemistry), and the site characteristics (i.e. climate). Additionally, also the sensitivity of the CoupModel with respect to texture prediction uncertainty with respect to surface runoff, transpiration, evaporation, evapotranspiration, and soil water content depends on site conditions (i.e. climate and soil type). For this reason, it is recommended that SVAT model sensitivity analysis be carried out prior to field spectroscopic measurements to account for site specific climate and soil conditions. Nevertheless, mapping of the soil properties estimated via spectroscopy using kriging resulted in poor interpolation (i.e. weak variograms) results as a consequence of a summation of uncertainty arising from the method of field measurement to mapping (i.e. spectroscopic soil prediction, kriging error) and site-specific ‘small-scale’ heterogeneity. The selected soil evaluation method (vis-NIR spectroscopy, structure comparison using image analysis, traditional laboratory analysis) showed that there are significant differences between the bamboo soil and the adjacent secondary forest soil established on the same soil type (Vertisol). Reflecting on the major study results, it can be stated that the selected method combination is a way forward to a more detailed and efficient way to evaluate the suitability of a specific site for reforestation. The results of this study provide insights into where and when during soil and vegetation measurements a high measurement accuracy is required to minimize uncertainties in SVAT modeling. / Umfangreiche Abholzungen, besonders in den (Sub-)Tropen, habe zu intensiver Bodendegradierung und Erosion mit einhergehendem Verlust der Bodenfruchtbarkeit geführt. Eine wirksame Maßnahme zur Vermeidung fortschreitender Bodendegradierung und Erosion sind Aufforstungen auf diesen Flächen, die bisweilen zu einer verbesserten Bodenqualität führen können. Eine Umwandlung von Grünland zu Wald kann jedoch einen entscheidenden Einfluss auf den Wasserhaushalt haben. Selbst unter humid-tropischen Klimabedingungen, wo Wasser in der Regel kein begrenzender Faktor ist, können sich Aufforstungen negativ auf die Wasserverfügbarkeit auswirken. In diesem Zusammenhang muss auch berücksichtigt werden, dass Klimamodelle eine Abnahme der Niederschläge in einigen dieser Regionen prognostizieren. Um die Probleme, die mit dem Klimawandel in Verbindung stehen zu mildern (z.B. Zunahme von Erosion und Dürreperioden), wurden und werden bereits umfangreiche Aufforstungsmaßnahmen durchgeführt. Viele dieser Maßnahmen waren nicht immer umfassend erfolgreich, weil die Umgebungsbedingungen sowie die pflanzenspezifischen Anforderungen nicht angemessen berücksichtigt wurden. Dies liegt häufig an der schlechten Datengrundlage sowie an den in vielen Entwicklungs- und Schwellenländern begrenzter verfügbarer finanzieller Mittel. Aus diesem Grund werden innovative Ansätze benötigt, die in der Lage sind quasi-kontinuierlich und kostengünstig die Standortbedingungen zu erfassen und zu bewerten. Gleichzeitig sollte eine Überwachung der Wiederaufforstungsmaßnahme erfolgen, um deren Erfolg zu bewerten und potentielle negative Effekte (z.B. Wasserknappheit) zu erkennen und diesen entgegenzuwirken bzw. reduzieren zu können. Um zu vermeiden, dass Wiederaufforstungen fehlschlagen oder negative Auswirkungen auf die Ökosystemdienstleistungen haben, ist es entscheidend, Kenntnisse vom tatsächlichen Wasserhaushalt des Ökosystems zu erhalten und Änderungen des Wasserhaushalts durch Wiederaufforstungen vorhersagen zu können. Die Ermittlung und Vorhersage von Wasserhaushaltsänderungen infolge einer Aufforstung unter Berücksichtigung des Klimawandels erfordert die Berücksichtigung komplex-verzahnter Rückkopplungsprozesse im Boden-Vegetations-Atmosphären Kontinuum. Hydrologische Modelle, die explizit den Einfluss der Vegetation auf den Wasserhaushalt untersuchen sind Soil-Vegetation-Atmosphere-Transfer (SVAT) Modelle. Die vorliegende Studie verfolgte zwei Hauptziele: (i) die Entwicklung und Erprobung einer Methodenkombination zur Standortbewertung unter Datenknappheit (d.h. Grundanforderung des Ansatzes) (Teil I) und (ii) die Untersuchung des Einflusses der mit geophysikalischen Methoden vorhergesagten SVAT-Modeleingangsparameter (d.h. Vorhersageunsicherheiten) auf die Modellierung (Teil II). Eine Wasserhaushaltsmodellierung wurde in den Mittelpunkt der Methodenkombination gesetzt. In dieser Studie wurde das 1D SVAT Model CoupModel verwendet. CoupModel benötigen detaillierte räumliche Bodeninformationen (i) zur Modellparametrisierung, (ii) zum Hochskalierung von Modellergebnissen unter Berücksichtigung lokaler und regionaler Bodenheterogenität, und (iii) zur Beobachtung (Monitoring) der zeitlichen Veränderungen des Bodens und der Vegetation. Traditionelle Ansätze zur Messung von Boden- und Vegetationseigenschaften und deren Monitoring sind jedoch zeitaufwendig, teuer und beschränken sich daher oft auf Punktinformationen. Ein vielversprechender Ansatz zur Überwindung der räumlichen Einschränkung sind die Nutzung geophysikalischer Methoden. Aus diesem Grund wurden vis-NIR Spektroskopie (sichtbarer bis nah-infraroter Wellenlängenbereich) zur quasi-kontinuierlichen Messung von physikalischer und chemischer Bodeneigenschaften und Satelliten-basierte Fernerkundung zur Ableitung von Vegetationscharakteristika (d.h. Blattflächenindex (BFI)) eingesetzt. Da die mit geophysikalisch hergeleiteten Bodenparameter (hier Bodenart) und Pflanzenparameter zur Parametrisierung eines SVAT Models verwendet werden können, wurde die gesamte Prozessierungskette und die damit verbundenen Unsicherheiten und deren potentiellen Auswirkungen auf die Wasserhaushaltsmodellierung mit CoupModel untersucht. Ein Gewächshausexperiment mit Bambuspflanzen wurde durchgeführt, um die zur CoupModel Parametrisierung notwendigen pflanzenphysio- logischen Parameter zu bestimmen. Geoelektrik wurde eingesetzt, um die Bodenschichtung der Untersuchungsfläche zu untersuchen und ein repräsentatives Bodenprofil zur Modellierung zu definieren. Die Bodenstruktur wurde unter Verwendung einer Bildanalysetechnik ausgewertet, die die qualitativen Bewertung und Vergleichbarkeit struktureller Merkmale ermöglicht. Um den Anforderungen des gewählten Standortbewertungsansatzes gerecht zu werden, wurde die Methodik auf einem Standort mit einer Bambusplantage und einem Sekundärregenwald (als Referenzfläche) in NO-Brasilien (d.h. geringe Datenverfügbarkeit) entwickelt und getestet. Das Ziel dieser Arbeit war jedoch nicht die Modellierung dieses konkreten Standortes, sondern die Bewertung der Eignung des gewählten Methodenansatzes zur Standortbewertung für Aufforstungen und deren zeitliche Beobachtung, als auch die Bewertung des Einfluss von Aufforstungen auf den Wasserhaushalt und die Bodenqualität. Die Ergebnisse (Teil III) verdeutlichen, dass es notwendig ist, sich den potentiellen Einfluss der Messunsicherheiten der SVAT Modelleingangsparameter auf die Modellierung bewusst zu sein. Beispielsweise zeigte sich, dass die Vorhersageunsicherheiten der Bodentextur und des BFI einen bedeutenden Einfluss auf die Wasserhaushaltsmodellierung mit CoupModel hatte. Die Arbeit zeigt weiterhin, dass vis-NIR Spektroskopie zur schnellen und kostengünstigen Messung, Kartierung und Überwachung boden-physikalischer (Bodenart) und -chemischer (N, TOC, TIC, TC) Eigenschaften geeignet ist. Die Qualität der Bodenvorhersage hängt vom Instrument (z.B. Sensorauflösung), den Probeneigenschaften (z.B. chemische Zusammensetzung) und den Standortmerkmalen (z.B. Klima) ab. Die Sensitivitätsanalyse mit CoupModel zeigte, dass der Einfluss der spektralen Bodenartvorhersageunsicherheiten auf den mit CoupModel simulierten Oberflächenabfluss, Evaporation, Transpiration und Evapotranspiration ebenfalls von den Standortbedingungen (z.B. Klima, Bodentyp) abhängt. Aus diesem Grund wird empfohlen eine SVAT Model Sensitivitätsanalyse vor der spektroskopischen Feldmessung von Bodenparametern durchzuführen, um die Standort-spezifischen Boden- und Klimabedingungen angemessen zu berücksichtigen. Die Anfertigung einer Bodenkarte unter Verwendung von Kriging führte zu schlechten Interpolationsergebnissen in Folge der Aufsummierung von Mess- und Schätzunsicherheiten (d.h. bei spektroskopischer Feldmessung, Kriging-Fehler) und der kleinskaligen Bodenheterogenität. Anhand des gewählten Bodenbewertungsansatzes (vis-NIR Spektroskopie, Strukturvergleich mit Bildanalysetechnik, traditionelle Laboranalysen) konnte gezeigt werden, dass es bei gleichem Bodentyp (Vertisol) signifikante Unterschiede zwischen den Böden unter Bambus und Sekundärwald gibt. Anhand der wichtigsten Ergebnisse kann festgehalten werden, dass die gewählte Methodenkombination zur detailreicheren und effizienteren Standortuntersuchung und -bewertung für Aufforstungen beitragen kann. Die Ergebnisse dieser Studie geben einen Einblick darauf, wo und wann bei Boden- und Vegetationsmessungen eine besonders hohe Messgenauigkeit erforderlich ist, um Unsicherheiten bei der SVAT Modellierung zu minimieren. / Extensos desmatamentos que estão sendo feitos especialmente nos trópicos e sub-trópicos resultam em uma intensa degradação do solo e num aumento da erosão gerando assim uma redução na sua fertilidade. Reflorestamentos ou plantações nestas áreas degradadas podem ser medidas eficazes para atenuar esses problemas e levar a uma melhoria da qualidade do mesmo. No entanto, uma mudança no uso da terra, por exemplo de pastagem para floresta pode ter um impacto crucial no balanço hídrico e isso pode afetar a disponibilidade de água, mesmo sob condições de clima tropical úmido, onde a água normalmente não é um fator limitante. Devemos levar também em consideração que de acordo com projeções de mudanças climáticas, as precipitações em algumas dessas regiões também diminuirão agravando assim, ainda mais o quadro apresentado. Para mitigar esses problemas relacionados com as alterações climáticas, reflorestamentos são frequentemente realizados mas raramente são bem-sucedidos, pois condições ambientais como os requisitos específicos de cada espécie de planta, não são devidamente levados em consideração. Isso é muitas vezes devido, não só pela falta de dados, como também por recursos financeiros limitados, que são problemas comuns em regiões tropicais. Por esses motivos, são necessárias abordagens inovadoras que devam ser capazes de medir as condições ambientais quase continuamente e de maneira rentável. Simultaneamente com o reflorestamento, deve ser feita uma monitoração a fim de avaliar o sucesso da atividade e para prevenir, ou pelo menos, reduzir os problemas potenciais associados com o mesmo (por exemplo, a escassez de água). Para se evitar falhas e reduzir implicações negativas sobre os ecossistemas, é crucial obter percepções sobre o real balanço hídrico e as mudanças que seriam geradas por esse reflorestamento. Por este motivo, esta tese teve como objetivo desenvolver e testar uma combinação de métodos para avaliação de áreas adequadas para reflorestamento. Com esse intuito, foi colocada no centro da abordagem de avaliação a modelagem do balanço hídrico local, que permite a identificação e estimação de possíveis alterações causadas pelo reflorestamento sob mudança climática considerando o sistema complexo de realimentação e a interação de processos do continuum solo-vegetação-atmosfera. Esses modelos hidrológicos que investigam explicitamente a influência da vegetação no equilíbrio da água são conhecidos como modelos Solo-Vegetação-Atmosfera (SVAT). Esta pesquisa focou em dois objetivos principais: (i) desenvolvimento e teste de uma combinação de métodos para avaliação de áreas que sofrem com a escassez de dados (pré-requisito do estudo) (Parte I), e (ii) a investigação das consequências da incerteza nos parâmetros de entrada do modelo SVAT, provenientes de dados geofísicos, para modelagem hídrica (Parte II). A fim de satisfazer esses objetivos, o estudo foi feito no nordeste brasileiro,por representar uma área de grande escassez de dados, utilizando como base uma plantação de bambu e uma área de floresta secundária. Uma modelagem do balanço hídrico foi disposta no centro da metodologia para a avaliação de áreas. Este estudo utilizou o CoupModel que é um modelo SVAT unidimensional e que requer informações espaciais detalhadas do solo para (i) a parametrização do modelo, (ii) aumento da escala dos resultados da modelagem, considerando a heterogeneidade do solo de escala local para regional e (iii) o monitoramento de mudanças nas propriedades do solo e características da vegetação ao longo do tempo. Entretanto, as abordagens tradicionais para amostragem de solo e de vegetação e o monitoramento são demorados e caros e portanto muitas vezes limitadas a informações pontuais. Por esta razão, métodos geofísicos como a espectroscopia visível e infravermelho próximo (vis-NIR) e sensoriamento remoto foram utilizados respectivamente para a medição de propriedades físicas e químicas do solo e para derivar as características da vegetação baseado no índice da área foliar (IAF). Como as propriedades estimadas de solo (principalmente a textura) poderiam ser usadas para parametrizar um modelo SVAT, este estudo investigou toda a cadeia de processamento e as incertezas de previsão relacionadas à textura de solo e ao IAF. Além disso explorou o impacto destas incertezas criadas sobre a previsão do balanço hídrico simulado por CoupModel. O método geoelétrico foi aplicado para investigar a estratificação do solo visando a determinação de um perfil representante. Já a sua estrutura foi explorada usando uma técnica de análise de imagens que permitiu a avaliação quantitativa e a comparabilidade dos aspectos estruturais. Um experimento realizado em uma estufa com plantas de bambu (Bambusa vulgaris) foi criado a fim de determinar as caraterísticas fisiológicas desta espécie que posteriormente seriam utilizadas como parâmetros para o CoupModel. Os resultados do estudo (Parte III) destacam que é preciso estar consciente das incertezas relacionadas à medição de parâmetros de entrada do modelo SVAT. A incerteza presente em alguns parâmetros de entrada como por exemplo, textura de solo e o IAF influencia significantemente a modelagem do balanço hídrico. Mesmo assim, esta pesquisa indica que vis-NIR espectroscopia é um método rápido e economicamente viável para medir, mapear e monitorar as propriedades físicas (textura) e químicas (N, TOC, TIC, TC) do solo. A precisão da previsão dessas propriedades depende do tipo de instrumento (por exemplo da resolução do sensor), da propriedade da amostra (a composição química por exemplo) e das características das condições climáticas da área. Os resultados apontam também que a sensitividade do CoupModel à incerteza da previsão da textura de solo em respeito ao escoamento superficial, transpiração, evaporação, evapotranspiração e ao conteúdo de água no solo depende das condições gerais da área (por exemplo condições climáticas e tipo de solo). Por isso, é recomendado realizar uma análise de sensitividade do modelo SVAT prior a medição espectral do solo no campo, para poder considerar adequadamente as condições especificas do área em relação ao clima e ao solo. Além disso, o mapeamento de propriedades de solo previstas pela espectroscopia usando o kriging, resultou em interpolações de baixa qualidade (variogramas fracos) como consequência da acumulação de incertezas surgidas desde a medição no campo até o seu mapeamento (ou seja, previsão do solo via espectroscopia, erro do kriging) e heterogeneidade especifica de uma pequena escala. Osmétodos selecionados para avaliação das áreas (vis-NIR espectroscopia, comparação da estrutura de solo por meio de análise de imagens, análise de laboratório tradicionais) revelou a existência de diferenças significativas entre o solo sob bambu e o sob floresta secundária, apesar de ambas terem sido estabelecidas no mesmo tipo de solo (vertissolo). Refletindo sobre os principais resultados do estudo, pode-se afirmar que a combinação dos métodos escolhidos e aplicados representam uma forma mais detalhada e eficaz de avaliar se uma determinada área é adequada para ser reflorestada. Os resultados apresentados fornecem percepções sobre onde e quando, durante a medição do solo e da vegetação, é necessário se ter uma precisão mais alta a fim de minimizar incertezas potenciais na modelagem com o modelo SVAT.
8

Site evaluation approach for reforestations based on SVAT water balance modeling considering data scarcity and uncertainty analysis of model input parameters from geophysical data

Mannschatz, Theresa 05 June 2015 (has links)
Extensive deforestations, particularly in the (sub)tropics, have led to intense soil degradation and erosion with concomitant reduction in soil fertility. Reforestations or plantations on those degraded sites may provide effective measures to mitigate further soil degradation and erosion, and can lead to improved soil quality. However, a change in land use from, e.g., grassland to forest may have a crucial impact on water balance. This may affect water availability even under humid tropical climate conditions where water is normally not a limiting factor. In this context, it should also be considered that according to climate change projections rainfall may decrease in some of these regions. To mitigate climate change related problems (e.g. increases in erosion and drought), reforestations are often carried out. Unfortunately, those measures are seldom completely successful, because the environmental conditions and the plant specific requirements are not appropriately taken into account. This is often due to data-scarcity and limited financial resources in tropical regions. For this reason, innovative approaches are required that are able to measure environmental conditions quasi-continuously in a cost-effective manner. Simultaneously, reforestation measures should be accompanied by monitoring in order to evaluate reforestation success and to mitigate, or at least to reduce, potential problems associated with reforestation (e.g. water scarcity). To avoid reforestation failure and negative implications on ecosystem services, it is crucial to get insights into the water balance of the actual ecosystem, and potential changes resulting from reforestation. The identification and prediction of water balance changes as a result of reforestation under climate change requires the consideration of the complex feedback system of processes in the soil-vegetation-atmosphere continuum. Models that account for those feedback system are Soil-Vegetation-Atmosphere-Transfer (SVAT) models. For the before-mentioned reasons, this study targeted two main objectives: (i) to develop and test a method combination for site evaluation under data scarcity (i.e. study requirements) (Part I) and (ii) to investigate the consequences of prediction uncertainty of the SVAT model input parameters, which were derived using geophysical methods, on SVAT modeling (Part II). A water balance modeling approach was set at the center of the site evaluation approach. This study used the one-dimensional CoupModel, which is a SVAT model. CoupModel requires detailed spatial soil information for (i) model parameterization, (ii) upscaling of model results and accounting for local to regional-scale soil heterogeneity, and (iii) monitoring of changes in soil properties and plant characteristics over time. Since traditional approaches to soil and vegetation sampling and monitoring are time consuming and expensive (and therefore often limited to point information), geophysical methods were used to overcome this spatial limitation. For this reason, vis-NIR spectroscopy (visible to near-infrared wavelength range) was applied for the measurement of soil properties (physical and chemical), and remote sensing to derive vegetation characteristics (i.e. leaf area index (LAI)). Since the estimated soil properties (mainly texture) could be used to parameterize a SVAT model, this study investigated the whole processing chain and related prediction uncertainty of soil texture and LAI, and their impact on CoupModel water balance prediction uncertainty. A greenhouse experiment with bamboo plants was carried out to determine plant-physiological characteristics needed for CoupModel parameterization. Geoelectrics was used to investigate soil layering, with the intent of determining site-representative soil profiles for model parameterization. Soil structure was investigated using image analysis techniques that allow the quantitative assessment and comparability of structural features. In order to meet the requirements of the selected study approach, the developed methodology was applied and tested for a site in NE-Brazil (which has low data availability) with a bamboo plantation as the test site and a secondary forest as the reference (reference site). Nevertheless, the objective of the thesis was not the concrete modeling of the case study site, but rather the evaluation of the suitability of the selected methods to evaluate sites for reforestations and to monitor their influence on the water balance as well as soil properties. The results (Part III) highlight that one needs to be aware of the measurement uncertainty related to SVAT model input parameters, so for instance the uncertainty of model input parameters such as soil texture and leaf area index influences meaningfully the simulated model water balance output. Furthermore, this work indicates that vis-NIR spectroscopy is a fast and cost-efficient method for soil measurement, mapping, and monitoring of soil physical (texture) and chemical (N, TOC, TIC, TC) properties, where the quality of soil prediction depends on the instrument (e.g. sensor resolution), the sample properties (i.e. chemistry), and the site characteristics (i.e. climate). Additionally, also the sensitivity of the CoupModel with respect to texture prediction uncertainty with respect to surface runoff, transpiration, evaporation, evapotranspiration, and soil water content depends on site conditions (i.e. climate and soil type). For this reason, it is recommended that SVAT model sensitivity analysis be carried out prior to field spectroscopic measurements to account for site specific climate and soil conditions. Nevertheless, mapping of the soil properties estimated via spectroscopy using kriging resulted in poor interpolation (i.e. weak variograms) results as a consequence of a summation of uncertainty arising from the method of field measurement to mapping (i.e. spectroscopic soil prediction, kriging error) and site-specific ‘small-scale’ heterogeneity. The selected soil evaluation method (vis-NIR spectroscopy, structure comparison using image analysis, traditional laboratory analysis) showed that there are significant differences between the bamboo soil and the adjacent secondary forest soil established on the same soil type (Vertisol). Reflecting on the major study results, it can be stated that the selected method combination is a way forward to a more detailed and efficient way to evaluate the suitability of a specific site for reforestation. The results of this study provide insights into where and when during soil and vegetation measurements a high measurement accuracy is required to minimize uncertainties in SVAT modeling.:I. Development of method combination for site evaluation for reforestations in data-scarce regions .... 23 2. Motivation, objectives and study approach .... 24 2.1. Introduction and study motivation .... 24 2.1.1. Research objectives and hypotheses ..... 27 2.1.2. Study approach ..... 28 3. Site selection and characterization procedure .... 32 3.1. On large scale – landscape segmentation .... 32 3.2. On local scale - case study site selection and characterization .... 34 3.2.1. Available data and characterization of identified case study site .... 34 3.2.2. Spatial distribution of soil properties - soil structure, bulk density and porosity .... 37 4. Eco-hydrological modeling - deriving plant-physiological model parameters .... 50 4.1. Introduction .... 50 4.2. Motivation and objectives ..... 52 4.3. Methods ... 53 4.3.1. Design of greenhouse experiment .... 53 4.3.2. Derivation of climate time-series .... 56 4.3.3. Plant variables and response to water availability .... 59 4.4. Results and discussion .... 62 4.4.1. Soil sample analysis .... 62 4.4.2. Measured time-series .... 63 4.4.3. Plant response to drought stress ..... 67 4.4.4. Water balance approach and estimated time-series of plant transpiration .... 71 4.4.5. Derived SVAT model plant input parameter .... 73 5. Near-surface geophysics .... 75 5.1. Vis-NIR spectroscopy of soils .... 76 5.1.1. Methods and materials .... 77 5.1.2. Results and discussion .... 79 5.2. Geoelectrics ..... 88 5.2.1. Methods and materials .... 89 5.2.2. Results and discussion .... 94 6. Remote sensing of vegetation .... 102 6.1. Introduction .... 102 6.2. Methods and materials .... 103 6.2.1. RapidEye images and ATCOR description .... 103 6.2.2. Satellite image preparation and atmospheric correction .... 104 6.2.3. LAI field measurement and computation of vegetation indices .... 105 6.2.4. Establishment of empirical LAI retrieval model .... 106 6.3. Results and discussion .... 108 6.3.1. Vegetation index ranking .... 108 II. Uncertainty analysis of model input parameters from geophysical data .... 110 7. Deriving soil properties - vis-NIR spectroscopy technique .... 111 7.1. Motivation .... 111 7.2. Materials and methods .... 113 7.2.1. Study sites .... 113 7.2.2. Samples used for uncertainty analysis .... 114 7.2.3. Vis-NIR spectral measurement, chemometric spectral data transformation and spectroscopic modeling .... 116 7.2.4. Assessment statistics .... 118 7.2.5. Inter-instrument calibration model transferability for soil monitoring .... 119 7.2.6. Analysis of SVAT model sensitivity to soil texture .... 121 7.3. Results and discussion .... 124 7.3.1. Effect of pre-processing transformation methods on prediction accuracy .... 124 7.3.2. Effect of spectral resampling .... 125 7.3.3. Accuracy of soil property prediction .... 127 7.3.4. Spectrometer comparison .... 133 7.3.5. Inter-instrument transferability .... 134 7.3.6. Precision of spectroscopic predictions in the context of SVAT modeling ....139 7.4. Conclusion .... 146 8. Deriving vegetation properties - remote sensing techniques .... 149 8.1. Motivation .... 149 8.2. Materials and methods .... 150 8.2.1. Study site .... 150 8.2.2. RapidEye images .... 150 8.2.3. Satellite image preparation .... 152 8.2.4. Atmospheric correction with parameter variation .... 152 8.2.5. Investigation of two successive images .... 154 8.2.6. LAI field measurement and computation of vegetation indices .... 155 8.2.7. Establishment of empirical LAI retrieval model .... 155 8.2.8. Sensitivity of SVAT model to LAI uncertainty .... 157 8.3. Results and discussion .... 157 8.3.1. Influence of atmospheric correction on RapidEye bands .... 158 8.3.2. Uncertainty of LAI field measurements and empirical relationship .... 161 8.3.3. Influence of ATCOR parameterization on LAI estimation .... 161 8.3.4. LAI variability within one image .... 167 8.3.5. LAI differences within the overlapping area of successive images recorded on the same date .... 171 8.3.6. Evaluation of LAI uncertainty in context of SVAT modeling ... 174 8.4. Conclusion .... 176 III. Synthesis .... 178 9. Summary of results and conclusions .... 179 10. Perspectives .... 185 / Umfangreiche Abholzungen, besonders in den (Sub-)Tropen, habe zu intensiver Bodendegradierung und Erosion mit einhergehendem Verlust der Bodenfruchtbarkeit geführt. Eine wirksame Maßnahme zur Vermeidung fortschreitender Bodendegradierung und Erosion sind Aufforstungen auf diesen Flächen, die bisweilen zu einer verbesserten Bodenqualität führen können. Eine Umwandlung von Grünland zu Wald kann jedoch einen entscheidenden Einfluss auf den Wasserhaushalt haben. Selbst unter humid-tropischen Klimabedingungen, wo Wasser in der Regel kein begrenzender Faktor ist, können sich Aufforstungen negativ auf die Wasserverfügbarkeit auswirken. In diesem Zusammenhang muss auch berücksichtigt werden, dass Klimamodelle eine Abnahme der Niederschläge in einigen dieser Regionen prognostizieren. Um die Probleme, die mit dem Klimawandel in Verbindung stehen zu mildern (z.B. Zunahme von Erosion und Dürreperioden), wurden und werden bereits umfangreiche Aufforstungsmaßnahmen durchgeführt. Viele dieser Maßnahmen waren nicht immer umfassend erfolgreich, weil die Umgebungsbedingungen sowie die pflanzenspezifischen Anforderungen nicht angemessen berücksichtigt wurden. Dies liegt häufig an der schlechten Datengrundlage sowie an den in vielen Entwicklungs- und Schwellenländern begrenzter verfügbarer finanzieller Mittel. Aus diesem Grund werden innovative Ansätze benötigt, die in der Lage sind quasi-kontinuierlich und kostengünstig die Standortbedingungen zu erfassen und zu bewerten. Gleichzeitig sollte eine Überwachung der Wiederaufforstungsmaßnahme erfolgen, um deren Erfolg zu bewerten und potentielle negative Effekte (z.B. Wasserknappheit) zu erkennen und diesen entgegenzuwirken bzw. reduzieren zu können. Um zu vermeiden, dass Wiederaufforstungen fehlschlagen oder negative Auswirkungen auf die Ökosystemdienstleistungen haben, ist es entscheidend, Kenntnisse vom tatsächlichen Wasserhaushalt des Ökosystems zu erhalten und Änderungen des Wasserhaushalts durch Wiederaufforstungen vorhersagen zu können. Die Ermittlung und Vorhersage von Wasserhaushaltsänderungen infolge einer Aufforstung unter Berücksichtigung des Klimawandels erfordert die Berücksichtigung komplex-verzahnter Rückkopplungsprozesse im Boden-Vegetations-Atmosphären Kontinuum. Hydrologische Modelle, die explizit den Einfluss der Vegetation auf den Wasserhaushalt untersuchen sind Soil-Vegetation-Atmosphere-Transfer (SVAT) Modelle. Die vorliegende Studie verfolgte zwei Hauptziele: (i) die Entwicklung und Erprobung einer Methodenkombination zur Standortbewertung unter Datenknappheit (d.h. Grundanforderung des Ansatzes) (Teil I) und (ii) die Untersuchung des Einflusses der mit geophysikalischen Methoden vorhergesagten SVAT-Modeleingangsparameter (d.h. Vorhersageunsicherheiten) auf die Modellierung (Teil II). Eine Wasserhaushaltsmodellierung wurde in den Mittelpunkt der Methodenkombination gesetzt. In dieser Studie wurde das 1D SVAT Model CoupModel verwendet. CoupModel benötigen detaillierte räumliche Bodeninformationen (i) zur Modellparametrisierung, (ii) zum Hochskalierung von Modellergebnissen unter Berücksichtigung lokaler und regionaler Bodenheterogenität, und (iii) zur Beobachtung (Monitoring) der zeitlichen Veränderungen des Bodens und der Vegetation. Traditionelle Ansätze zur Messung von Boden- und Vegetationseigenschaften und deren Monitoring sind jedoch zeitaufwendig, teuer und beschränken sich daher oft auf Punktinformationen. Ein vielversprechender Ansatz zur Überwindung der räumlichen Einschränkung sind die Nutzung geophysikalischer Methoden. Aus diesem Grund wurden vis-NIR Spektroskopie (sichtbarer bis nah-infraroter Wellenlängenbereich) zur quasi-kontinuierlichen Messung von physikalischer und chemischer Bodeneigenschaften und Satelliten-basierte Fernerkundung zur Ableitung von Vegetationscharakteristika (d.h. Blattflächenindex (BFI)) eingesetzt. Da die mit geophysikalisch hergeleiteten Bodenparameter (hier Bodenart) und Pflanzenparameter zur Parametrisierung eines SVAT Models verwendet werden können, wurde die gesamte Prozessierungskette und die damit verbundenen Unsicherheiten und deren potentiellen Auswirkungen auf die Wasserhaushaltsmodellierung mit CoupModel untersucht. Ein Gewächshausexperiment mit Bambuspflanzen wurde durchgeführt, um die zur CoupModel Parametrisierung notwendigen pflanzenphysio- logischen Parameter zu bestimmen. Geoelektrik wurde eingesetzt, um die Bodenschichtung der Untersuchungsfläche zu untersuchen und ein repräsentatives Bodenprofil zur Modellierung zu definieren. Die Bodenstruktur wurde unter Verwendung einer Bildanalysetechnik ausgewertet, die die qualitativen Bewertung und Vergleichbarkeit struktureller Merkmale ermöglicht. Um den Anforderungen des gewählten Standortbewertungsansatzes gerecht zu werden, wurde die Methodik auf einem Standort mit einer Bambusplantage und einem Sekundärregenwald (als Referenzfläche) in NO-Brasilien (d.h. geringe Datenverfügbarkeit) entwickelt und getestet. Das Ziel dieser Arbeit war jedoch nicht die Modellierung dieses konkreten Standortes, sondern die Bewertung der Eignung des gewählten Methodenansatzes zur Standortbewertung für Aufforstungen und deren zeitliche Beobachtung, als auch die Bewertung des Einfluss von Aufforstungen auf den Wasserhaushalt und die Bodenqualität. Die Ergebnisse (Teil III) verdeutlichen, dass es notwendig ist, sich den potentiellen Einfluss der Messunsicherheiten der SVAT Modelleingangsparameter auf die Modellierung bewusst zu sein. Beispielsweise zeigte sich, dass die Vorhersageunsicherheiten der Bodentextur und des BFI einen bedeutenden Einfluss auf die Wasserhaushaltsmodellierung mit CoupModel hatte. Die Arbeit zeigt weiterhin, dass vis-NIR Spektroskopie zur schnellen und kostengünstigen Messung, Kartierung und Überwachung boden-physikalischer (Bodenart) und -chemischer (N, TOC, TIC, TC) Eigenschaften geeignet ist. Die Qualität der Bodenvorhersage hängt vom Instrument (z.B. Sensorauflösung), den Probeneigenschaften (z.B. chemische Zusammensetzung) und den Standortmerkmalen (z.B. Klima) ab. Die Sensitivitätsanalyse mit CoupModel zeigte, dass der Einfluss der spektralen Bodenartvorhersageunsicherheiten auf den mit CoupModel simulierten Oberflächenabfluss, Evaporation, Transpiration und Evapotranspiration ebenfalls von den Standortbedingungen (z.B. Klima, Bodentyp) abhängt. Aus diesem Grund wird empfohlen eine SVAT Model Sensitivitätsanalyse vor der spektroskopischen Feldmessung von Bodenparametern durchzuführen, um die Standort-spezifischen Boden- und Klimabedingungen angemessen zu berücksichtigen. Die Anfertigung einer Bodenkarte unter Verwendung von Kriging führte zu schlechten Interpolationsergebnissen in Folge der Aufsummierung von Mess- und Schätzunsicherheiten (d.h. bei spektroskopischer Feldmessung, Kriging-Fehler) und der kleinskaligen Bodenheterogenität. Anhand des gewählten Bodenbewertungsansatzes (vis-NIR Spektroskopie, Strukturvergleich mit Bildanalysetechnik, traditionelle Laboranalysen) konnte gezeigt werden, dass es bei gleichem Bodentyp (Vertisol) signifikante Unterschiede zwischen den Böden unter Bambus und Sekundärwald gibt. Anhand der wichtigsten Ergebnisse kann festgehalten werden, dass die gewählte Methodenkombination zur detailreicheren und effizienteren Standortuntersuchung und -bewertung für Aufforstungen beitragen kann. Die Ergebnisse dieser Studie geben einen Einblick darauf, wo und wann bei Boden- und Vegetationsmessungen eine besonders hohe Messgenauigkeit erforderlich ist, um Unsicherheiten bei der SVAT Modellierung zu minimieren.:I. Development of method combination for site evaluation for reforestations in data-scarce regions .... 23 2. Motivation, objectives and study approach .... 24 2.1. Introduction and study motivation .... 24 2.1.1. Research objectives and hypotheses ..... 27 2.1.2. Study approach ..... 28 3. Site selection and characterization procedure .... 32 3.1. On large scale – landscape segmentation .... 32 3.2. On local scale - case study site selection and characterization .... 34 3.2.1. Available data and characterization of identified case study site .... 34 3.2.2. Spatial distribution of soil properties - soil structure, bulk density and porosity .... 37 4. Eco-hydrological modeling - deriving plant-physiological model parameters .... 50 4.1. Introduction .... 50 4.2. Motivation and objectives ..... 52 4.3. Methods ... 53 4.3.1. Design of greenhouse experiment .... 53 4.3.2. Derivation of climate time-series .... 56 4.3.3. Plant variables and response to water availability .... 59 4.4. Results and discussion .... 62 4.4.1. Soil sample analysis .... 62 4.4.2. Measured time-series .... 63 4.4.3. Plant response to drought stress ..... 67 4.4.4. Water balance approach and estimated time-series of plant transpiration .... 71 4.4.5. Derived SVAT model plant input parameter .... 73 5. Near-surface geophysics .... 75 5.1. Vis-NIR spectroscopy of soils .... 76 5.1.1. Methods and materials .... 77 5.1.2. Results and discussion .... 79 5.2. Geoelectrics ..... 88 5.2.1. Methods and materials .... 89 5.2.2. Results and discussion .... 94 6. Remote sensing of vegetation .... 102 6.1. Introduction .... 102 6.2. Methods and materials .... 103 6.2.1. RapidEye images and ATCOR description .... 103 6.2.2. Satellite image preparation and atmospheric correction .... 104 6.2.3. LAI field measurement and computation of vegetation indices .... 105 6.2.4. Establishment of empirical LAI retrieval model .... 106 6.3. Results and discussion .... 108 6.3.1. Vegetation index ranking .... 108 II. Uncertainty analysis of model input parameters from geophysical data .... 110 7. Deriving soil properties - vis-NIR spectroscopy technique .... 111 7.1. Motivation .... 111 7.2. Materials and methods .... 113 7.2.1. Study sites .... 113 7.2.2. Samples used for uncertainty analysis .... 114 7.2.3. Vis-NIR spectral measurement, chemometric spectral data transformation and spectroscopic modeling .... 116 7.2.4. Assessment statistics .... 118 7.2.5. Inter-instrument calibration model transferability for soil monitoring .... 119 7.2.6. Analysis of SVAT model sensitivity to soil texture .... 121 7.3. Results and discussion .... 124 7.3.1. Effect of pre-processing transformation methods on prediction accuracy .... 124 7.3.2. Effect of spectral resampling .... 125 7.3.3. Accuracy of soil property prediction .... 127 7.3.4. Spectrometer comparison .... 133 7.3.5. Inter-instrument transferability .... 134 7.3.6. Precision of spectroscopic predictions in the context of SVAT modeling ....139 7.4. Conclusion .... 146 8. Deriving vegetation properties - remote sensing techniques .... 149 8.1. Motivation .... 149 8.2. Materials and methods .... 150 8.2.1. Study site .... 150 8.2.2. RapidEye images .... 150 8.2.3. Satellite image preparation .... 152 8.2.4. Atmospheric correction with parameter variation .... 152 8.2.5. Investigation of two successive images .... 154 8.2.6. LAI field measurement and computation of vegetation indices .... 155 8.2.7. Establishment of empirical LAI retrieval model .... 155 8.2.8. Sensitivity of SVAT model to LAI uncertainty .... 157 8.3. Results and discussion .... 157 8.3.1. Influence of atmospheric correction on RapidEye bands .... 158 8.3.2. Uncertainty of LAI field measurements and empirical relationship .... 161 8.3.3. Influence of ATCOR parameterization on LAI estimation .... 161 8.3.4. LAI variability within one image .... 167 8.3.5. LAI differences within the overlapping area of successive images recorded on the same date .... 171 8.3.6. Evaluation of LAI uncertainty in context of SVAT modeling ... 174 8.4. Conclusion .... 176 III. Synthesis .... 178 9. Summary of results and conclusions .... 179 10. Perspectives .... 185 / Extensos desmatamentos que estão sendo feitos especialmente nos trópicos e sub-trópicos resultam em uma intensa degradação do solo e num aumento da erosão gerando assim uma redução na sua fertilidade. Reflorestamentos ou plantações nestas áreas degradadas podem ser medidas eficazes para atenuar esses problemas e levar a uma melhoria da qualidade do mesmo. No entanto, uma mudança no uso da terra, por exemplo de pastagem para floresta pode ter um impacto crucial no balanço hídrico e isso pode afetar a disponibilidade de água, mesmo sob condições de clima tropical úmido, onde a água normalmente não é um fator limitante. Devemos levar também em consideração que de acordo com projeções de mudanças climáticas, as precipitações em algumas dessas regiões também diminuirão agravando assim, ainda mais o quadro apresentado. Para mitigar esses problemas relacionados com as alterações climáticas, reflorestamentos são frequentemente realizados mas raramente são bem-sucedidos, pois condições ambientais como os requisitos específicos de cada espécie de planta, não são devidamente levados em consideração. Isso é muitas vezes devido, não só pela falta de dados, como também por recursos financeiros limitados, que são problemas comuns em regiões tropicais. Por esses motivos, são necessárias abordagens inovadoras que devam ser capazes de medir as condições ambientais quase continuamente e de maneira rentável. Simultaneamente com o reflorestamento, deve ser feita uma monitoração a fim de avaliar o sucesso da atividade e para prevenir, ou pelo menos, reduzir os problemas potenciais associados com o mesmo (por exemplo, a escassez de água). Para se evitar falhas e reduzir implicações negativas sobre os ecossistemas, é crucial obter percepções sobre o real balanço hídrico e as mudanças que seriam geradas por esse reflorestamento. Por este motivo, esta tese teve como objetivo desenvolver e testar uma combinação de métodos para avaliação de áreas adequadas para reflorestamento. Com esse intuito, foi colocada no centro da abordagem de avaliação a modelagem do balanço hídrico local, que permite a identificação e estimação de possíveis alterações causadas pelo reflorestamento sob mudança climática considerando o sistema complexo de realimentação e a interação de processos do continuum solo-vegetação-atmosfera. Esses modelos hidrológicos que investigam explicitamente a influência da vegetação no equilíbrio da água são conhecidos como modelos Solo-Vegetação-Atmosfera (SVAT). Esta pesquisa focou em dois objetivos principais: (i) desenvolvimento e teste de uma combinação de métodos para avaliação de áreas que sofrem com a escassez de dados (pré-requisito do estudo) (Parte I), e (ii) a investigação das consequências da incerteza nos parâmetros de entrada do modelo SVAT, provenientes de dados geofísicos, para modelagem hídrica (Parte II). A fim de satisfazer esses objetivos, o estudo foi feito no nordeste brasileiro,por representar uma área de grande escassez de dados, utilizando como base uma plantação de bambu e uma área de floresta secundária. Uma modelagem do balanço hídrico foi disposta no centro da metodologia para a avaliação de áreas. Este estudo utilizou o CoupModel que é um modelo SVAT unidimensional e que requer informações espaciais detalhadas do solo para (i) a parametrização do modelo, (ii) aumento da escala dos resultados da modelagem, considerando a heterogeneidade do solo de escala local para regional e (iii) o monitoramento de mudanças nas propriedades do solo e características da vegetação ao longo do tempo. Entretanto, as abordagens tradicionais para amostragem de solo e de vegetação e o monitoramento são demorados e caros e portanto muitas vezes limitadas a informações pontuais. Por esta razão, métodos geofísicos como a espectroscopia visível e infravermelho próximo (vis-NIR) e sensoriamento remoto foram utilizados respectivamente para a medição de propriedades físicas e químicas do solo e para derivar as características da vegetação baseado no índice da área foliar (IAF). Como as propriedades estimadas de solo (principalmente a textura) poderiam ser usadas para parametrizar um modelo SVAT, este estudo investigou toda a cadeia de processamento e as incertezas de previsão relacionadas à textura de solo e ao IAF. Além disso explorou o impacto destas incertezas criadas sobre a previsão do balanço hídrico simulado por CoupModel. O método geoelétrico foi aplicado para investigar a estratificação do solo visando a determinação de um perfil representante. Já a sua estrutura foi explorada usando uma técnica de análise de imagens que permitiu a avaliação quantitativa e a comparabilidade dos aspectos estruturais. Um experimento realizado em uma estufa com plantas de bambu (Bambusa vulgaris) foi criado a fim de determinar as caraterísticas fisiológicas desta espécie que posteriormente seriam utilizadas como parâmetros para o CoupModel. Os resultados do estudo (Parte III) destacam que é preciso estar consciente das incertezas relacionadas à medição de parâmetros de entrada do modelo SVAT. A incerteza presente em alguns parâmetros de entrada como por exemplo, textura de solo e o IAF influencia significantemente a modelagem do balanço hídrico. Mesmo assim, esta pesquisa indica que vis-NIR espectroscopia é um método rápido e economicamente viável para medir, mapear e monitorar as propriedades físicas (textura) e químicas (N, TOC, TIC, TC) do solo. A precisão da previsão dessas propriedades depende do tipo de instrumento (por exemplo da resolução do sensor), da propriedade da amostra (a composição química por exemplo) e das características das condições climáticas da área. Os resultados apontam também que a sensitividade do CoupModel à incerteza da previsão da textura de solo em respeito ao escoamento superficial, transpiração, evaporação, evapotranspiração e ao conteúdo de água no solo depende das condições gerais da área (por exemplo condições climáticas e tipo de solo). Por isso, é recomendado realizar uma análise de sensitividade do modelo SVAT prior a medição espectral do solo no campo, para poder considerar adequadamente as condições especificas do área em relação ao clima e ao solo. Além disso, o mapeamento de propriedades de solo previstas pela espectroscopia usando o kriging, resultou em interpolações de baixa qualidade (variogramas fracos) como consequência da acumulação de incertezas surgidas desde a medição no campo até o seu mapeamento (ou seja, previsão do solo via espectroscopia, erro do kriging) e heterogeneidade especifica de uma pequena escala. Osmétodos selecionados para avaliação das áreas (vis-NIR espectroscopia, comparação da estrutura de solo por meio de análise de imagens, análise de laboratório tradicionais) revelou a existência de diferenças significativas entre o solo sob bambu e o sob floresta secundária, apesar de ambas terem sido estabelecidas no mesmo tipo de solo (vertissolo). Refletindo sobre os principais resultados do estudo, pode-se afirmar que a combinação dos métodos escolhidos e aplicados representam uma forma mais detalhada e eficaz de avaliar se uma determinada área é adequada para ser reflorestada. Os resultados apresentados fornecem percepções sobre onde e quando, durante a medição do solo e da vegetação, é necessário se ter uma precisão mais alta a fim de minimizar incertezas potenciais na modelagem com o modelo SVAT.:I. Development of method combination for site evaluation for reforestations in data-scarce regions .... 23 2. Motivation, objectives and study approach .... 24 2.1. Introduction and study motivation .... 24 2.1.1. Research objectives and hypotheses ..... 27 2.1.2. Study approach ..... 28 3. Site selection and characterization procedure .... 32 3.1. On large scale – landscape segmentation .... 32 3.2. On local scale - case study site selection and characterization .... 34 3.2.1. Available data and characterization of identified case study site .... 34 3.2.2. Spatial distribution of soil properties - soil structure, bulk density and porosity .... 37 4. Eco-hydrological modeling - deriving plant-physiological model parameters .... 50 4.1. Introduction .... 50 4.2. Motivation and objectives ..... 52 4.3. Methods ... 53 4.3.1. Design of greenhouse experiment .... 53 4.3.2. Derivation of climate time-series .... 56 4.3.3. Plant variables and response to water availability .... 59 4.4. Results and discussion .... 62 4.4.1. Soil sample analysis .... 62 4.4.2. Measured time-series .... 63 4.4.3. Plant response to drought stress ..... 67 4.4.4. Water balance approach and estimated time-series of plant transpiration .... 71 4.4.5. Derived SVAT model plant input parameter .... 73 5. Near-surface geophysics .... 75 5.1. Vis-NIR spectroscopy of soils .... 76 5.1.1. Methods and materials .... 77 5.1.2. Results and discussion .... 79 5.2. Geoelectrics ..... 88 5.2.1. Methods and materials .... 89 5.2.2. Results and discussion .... 94 6. Remote sensing of vegetation .... 102 6.1. Introduction .... 102 6.2. Methods and materials .... 103 6.2.1. RapidEye images and ATCOR description .... 103 6.2.2. Satellite image preparation and atmospheric correction .... 104 6.2.3. LAI field measurement and computation of vegetation indices .... 105 6.2.4. Establishment of empirical LAI retrieval model .... 106 6.3. Results and discussion .... 108 6.3.1. Vegetation index ranking .... 108 II. Uncertainty analysis of model input parameters from geophysical data .... 110 7. Deriving soil properties - vis-NIR spectroscopy technique .... 111 7.1. Motivation .... 111 7.2. Materials and methods .... 113 7.2.1. Study sites .... 113 7.2.2. Samples used for uncertainty analysis .... 114 7.2.3. Vis-NIR spectral measurement, chemometric spectral data transformation and spectroscopic modeling .... 116 7.2.4. Assessment statistics .... 118 7.2.5. Inter-instrument calibration model transferability for soil monitoring .... 119 7.2.6. Analysis of SVAT model sensitivity to soil texture .... 121 7.3. Results and discussion .... 124 7.3.1. Effect of pre-processing transformation methods on prediction accuracy .... 124 7.3.2. Effect of spectral resampling .... 125 7.3.3. Accuracy of soil property prediction .... 127 7.3.4. Spectrometer comparison .... 133 7.3.5. Inter-instrument transferability .... 134 7.3.6. Precision of spectroscopic predictions in the context of SVAT modeling ....139 7.4. Conclusion .... 146 8. Deriving vegetation properties - remote sensing techniques .... 149 8.1. Motivation .... 149 8.2. Materials and methods .... 150 8.2.1. Study site .... 150 8.2.2. RapidEye images .... 150 8.2.3. Satellite image preparation .... 152 8.2.4. Atmospheric correction with parameter variation .... 152 8.2.5. Investigation of two successive images .... 154 8.2.6. LAI field measurement and computation of vegetation indices .... 155 8.2.7. Establishment of empirical LAI retrieval model .... 155 8.2.8. Sensitivity of SVAT model to LAI uncertainty .... 157 8.3. Results and discussion .... 157 8.3.1. Influence of atmospheric correction on RapidEye bands .... 158 8.3.2. Uncertainty of LAI field measurements and empirical relationship .... 161 8.3.3. Influence of ATCOR parameterization on LAI estimation .... 161 8.3.4. LAI variability within one image .... 167 8.3.5. LAI differences within the overlapping area of successive images recorded on the same date .... 171 8.3.6. Evaluation of LAI uncertainty in context of SVAT modeling ... 174 8.4. Conclusion .... 176 III. Synthesis .... 178 9. Summary of results and conclusions .... 179 10. Perspectives .... 185
9

Relationships between soil chemical properties and forest structure, productivity and floristic diversity along an altitudinal transect of moist tropical forest in Amazonia, Ecuador. / Beziehungen zwischen bodenchemischen Eigenschaften und Waldstruktur, Produktivität und floristischer Diversität tropischer Regenwälder Amazoniens entlang eines Höhengradienten in Ecuador.

Unger, Malte Arne 30 April 2010 (has links)
No description available.

Page generated in 0.0565 seconds