• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 1
  • Tagged with
  • 24
  • 24
  • 14
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Three-Dimensional Hyper-Viscoelasticity Constitutive Model for the Dynamic Response of Rubber

Liu, Min 13 September 2007 (has links)
No description available.
2

The role of long-term tectonic deformation on present day seismicity in the Caribbean and Central America

Schobelock, Jessica Jeannette 27 August 2018 (has links)
The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subduction along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a revised continuous tectonic strain rate model based on interseismic, secular geodetic data. We compare it with its predecessor, the Global Strain Rate Model v2.1 (GSRM). Specifically, we compare predicted fault types with known active faults and evaluate the style of predicted fault types with present-day earthquake focal mechanism data. We first create a 0.25$^{circ}$ x 0.25$^{circ}$ finite element grid that is comprised of block geometries defined from previous studies. Second, we isolate and remove anomalous signals that are inconsistent with rigid block motion from the latest open access community Global Navigation Satellite System (GNSS) velocity solution from UNAVCO and combine it with GNSS data compiled for the GSRM. In a third step, we delineate zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone, which are based on locations of GNSS data consistent with rigid block motion. Fourth, we assign the regions within the buffer of zero for the deforming areas and a plate index outside the buffer to constrain plate rigidity. Finally, we calculate a tectonic strain rate and continuous velocity model for CCAR using the Haines and Holt finite element approach to fit bicubic Bessel splines to the GNSS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the East Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary with a few exceptions due to limitations with the modeling approach. Modeling results are then used to calculate expected faulting behaviors that we compare with seismic activity, the GSRM, and mapped geologic faults. We find the accumulation of strain rates in areas near the Middle American Trench, Hispaniola, the northeastern Caribbean, and northern South America indicate tectonic deformation that may result in seismic events. We conclude the tectonic deformation plays a critical role in explaining present-day seismicity along land masses adjacent to the subduction zone and the Hispaniola block. / Master of Science / Central America and the Caribbean are areas with high occurrences of earthquakes. This is due to the various types of tectonic plate boundaries that occur in the region. When plates move in relation to each other, they can accumulate strain, which plays a role in the size and type of earthquakes that occur. In this work, we aim to determine the effects on strain on earthquakes. To do this, we utilize an inversion method to calculate strain rates from Global Navigation Satellite System (GNSS) data. In our model, we first create a grid of points and a geometry of the regional tectonic blocks. We then gather data from public and published sources. The model also requires that we define where the plates are allowed to deform (accumulate strain) and where they remain rigid. Using the Haines and Holt method, we invert the GNSS velocities for strain rates and velocities. We find long-term tectonic deformation dominates the present-day seismic activity in three key regions: along the Middle America Trench and across the Hispaniola block.
3

Characterization of the Dynamic Strength of Aluminium at Extreme Strain Rates and Pressures

January 2017 (has links)
abstract: The study of response of various materials to intense dynamic loading events, such as shock loading due to high-velocity impacts, is extremely important in a wide variety of military and industrial applications. Shock loading triggers extreme states, leading to high pressures and strain rates, and neglecting strength is a typical approximation under such conditions. However, recent results have shown that strength effects are larger than expected, so they must be taken into account. Recently, hydrodynamic instabilities, the most common being the Rayleigh-Taylor (RTI) and Richtmyer-Meshkov (RMI) instabilities, have been used to infer the dynamic strength of materials at high pressure conditions. In our experiments and simulations, a novel RMI approach is used, in which periodic surface perturbations are made on high purity aluminium target, which was laser ablated to create a rippled shock front. Due to the slow linear growth rate of RMI, the evolution of the perturbations on the back surface of the sample as a result of the rippled shock can be measured via Transient Imaging Displacement Interferometry (TIDI). The velocity history at the free surface was recorded by spatially resolved laser velocimetry. These measurements were compared with the results from the simulations, which were implemented using rate independent and rate dependent material models, to characterize the dynamic strength of the material. Simulations using the elastic-perfectly plastic model, which is rate independent, failed to provide a value of dynamic yield strength that would match experimental measurements of perturbation amplitudes. The Preston-Tonks-Wallace (PTW) model, which is rate dependent model, worked well for aluminium. This model was, in turn, used as a reference for calibrating the rate dependent Steinberg-Lund model and the results from simulations using the calibration models were also compared to experimental measurements. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2017
4

A Study of the Dynamic Behavior of a Solid Grade SW Brick using the Split Hopkinson Pressure Bar

Williams, Erin Marie 01 May 2010 (has links)
The purpose of this investigation was to provide quality dynamic strength properties for a solid grade severe-weather (SW) brick material and to illustrate the need for careful evaluation of the strain-rate effects on geomaterials. A split Hopkinson pressure bar (SHPB) was used to perform a series of tests on specimens from a solid grade SW brick to determine the mechanical response of this material at high strain-rates. Both classical and modified SHPB tests were performed. The results from the classical SHPB tests provided evidence that modifications to the SHPB are necessary when testing geomaterials such as brick. To modify the SHPB, a small copper disk was placed at the impact end of the SHPB incident bar to increase the rise time of the initial pulse. The material response from the modified SHPB tests provided an average compressive strength of 104 MPa, which resulted in a dynamic increase factor of 1.42.
5

Constitutive Modeling and Failure Criteria of Carbon-Fiber Reinforced Polymers Under High Strain Rates

Karim, Mohammed Rezaul January 2005 (has links)
No description available.
6

On the response of rubbers at high strain rates

Niemczura, Johnathan Greenberg 26 May 2010 (has links)
The purpose of this study is to examine the propagation of waves of finite deformation in rubbers through experiments and analysis. First, attention is focused on the propagation of one-dimensional dispersive waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in rubber strips. Analysis of the response through the theory of finite wave propagation indicated a need for an appropriate constitutive model for rubber; by quantitative matching between the experimental observations and analytical predictions, an appropriate instantaneous elastic response for the rubbers was obtained. This matching process suggested that a simple power-law constitutive model was capable of representing the high strain-rate response for both rubbers used. Next, the propagation of one-dimensional shock waves in strips of latex and nitrile rubber is examined. Shock waves have been generated under tensile impact in pre-stretched rubber strips; analysis of the response yields the tensile shock adiabat for rubbers. The propagation of shocks is analyzed by developing an analogy with the theory of detonation. Attention is then focused on the propagation of unloading waves of finite deformation in a rubber specimen analytically and experimentally. A rubber strip stretched to many times its initial length is released at one end and the resulting unloading is examined. Dispersive waves as well as shock waves are observed in these experiments. Quantitative discrepancies between the analytical model and experimental observations are again used to motivate a power-law model. Hysteresis in the response is attributed to strain-induced crystallization and melting phase transitions in natural latex rubber, and to nonequilibrium microstructural deformation in nitrile rubber. Finally, a Kolsky experiment is conducted and analyzed under the framework of dispersive loading and unloading waves utilized in the previous experiments. In this experiment, a phase boundary is introduced separating low and high strain phases of the rubber and is demonstrated to persist as a stationary boundary in latex rubber. / text
7

Performance of multi-component polymers at high strain rates

Prudom, Andrew January 2012 (has links)
More and more, advanced polymer and composite materials are being applied in engineering situations where a high resistance to loading at high rates of strain, such as by impact or blast deformation, are a vital requirement. Specific examples exist in the fields of defence and sport research and development for personal, and in the case of the former, vehicular, protection. There are obvious advantages to the use of polymer materials for these applications in augmenting the more widely used metals and ceramics, most notably the evident reduction in weight, and it is believed that with suitable nano-reinforcement these materials may exhibit improved combat survivability. The current study concerns the effect that nano-reinforcements in the form of Carbon Black, Titanium Dioxide, Exfoliated Hectorite Nanoclay and Carbon Nanotubes; have upon the high strain rate mechanical properties of structural variants of Polyethylene (Linear Low Density Polyethylene, LLDPE; High Density Polyethylene, HDPE; Ultra-High Molecular Weight Polyethylene, UHMWPE) and blends of UHMWPE and HDPE. The testing samples were manufactured using a novel process developed in the Loughborough University Materials Department, which has produced well-dispersed specimens. The formed nanocomposite samples were studied using an in-house four-bar Split Hopkinson Pressure Bar (SHPB) system for high strain rate performance, instrumented dropweight for intermediate strain rates and a conventional commercial Hounsfield H50KM universal testing machine for quasi-static strain rate compressive tests. The experimental results recorded for un-reinforced materials are used as a reference to allow comparative analysis of any effect the nano-reinforcements or the blending process have upon the structure, performance and properties of the composite material. From the mechanical testing, it was seen that the stress-strain behaviour of Polyethylene is highly strain-rate-dependent, as plots of the average representative yield stress as a function of strain rate show a bilinear relationship when plotted on a logarithmic strain rate scale, with the gradient of the curve rising sharply at around 103s-1. Concerning the addition of the nanofiller materials, it was seen that there was an increase in the flow and yield stresses and the energy absorption characteristics of the resulting composite with the magnitude dependent upon whether it was a pure or blended polymer that was reinforced. Of the aforementioned fillers it was seen that the addition of Carbon Nanotubes in the small concentrations studied resulted in the greatest increase in properties compared to the pure polymers, closely followed by the Carbon Black fillers. Also of note, the un-reinforced blended samples showed significant increases in flow stress, yield stress and energy absorption when compared to the constituent UHMWPE and HDPE polymers. Additionally, a complete set of Differential Scanning Calorimetry and density measurements were made before testing to assess any changes in the properties after reinforcement or blending, and to help in the interpretation of the results from the different mechanical tests.
8

Projeto e construção de um dispositivo para ensaio de impacto em materiais, barra de compressão / Design and construction of a device for impact test materials, compression bar

Todesco, Sérgio Roberto 17 November 2015 (has links)
Esta dissertação apresenta um projeto de um dispositivo para levantar dados característicos de materiais submetidos às altas taxas de deformação, dispositivo este que leva o nome do seu idealizador o engenheiro Inglês Sir Bertram Hopkinson. Mais especificamente, esta dissertação está inseparavelmente ligada ao desenvolvimento de um embalado para transporte de elementos radioativos como sendo uma das partes do escopo geral, de um projeto da CAPES em convênio com o Centro de Ciência e Tecnologia de Materiais - CCTM do, Instituto de Pesquisas Energéticas e Nucleares IPEN - CNEN/SP, autarquia associada à Universidade de São Paulo. O desenvolvimento do dispositivo faz parte do escopo de obtenção, e levantamento dos dados necessários para o projeto, e a construção do embalado. Esta dissertação versa sobre a concepção mecânica do dispositivo, importante, dividida em duas partes, dimensionamento das barras, que seriam a barra de impacto, a barra de entrada, e a barra de saída, e o dimensionamento do dispositivo de impacto. O dimensionamento das barras envolve conhecimentos do conceito de ondas elásticas em meios sólidos para que o comprimento das barras seja estimado de forma a servir de guia das ondas elásticas, que provocarão a deformação no corpo de prova, e possibilite a boa leitura dessas ondas para análise dos dados. O dispositivo de impacto, este tem que ser robusto o suficiente para produzir a onda de tensão que deforme o corpo de prova, mas não para deformar plasticamente as barras, que terão que continuar durante todo o teste dentro do regime elástico. / This dissertation presents a design of a device to collect characteristic data of materials submitted to the high strain rates, device that takes the name of its idealizer the English engineer Sir Bertram Hopkinson. More specifically, this dissertation is inseparably linked to the development of a package for the transport of radioactive elements as part of the general scope of a CAPES project in partnership with the Materials Science and Technology Center (CCTM), Nuclear and Energy Research Institute IPEN - CNEN / SP, autarchy associated with the University of São Paulo. The development of the device is part of the scope of procurement, and collection of data required for the design, and the construction of the packaging. This dissertation deals with the mechanical design of the device, important, divided into two parts, dimensioning of the bars, which would be the impact bar, the input and output bars and the design of the impact device. The sizing of the bars involves knowledge of the concept of elastic waves in solid media so that the length of the bars is estimated in order to serve as a guide for the elastic waves, which will cause deformation in the test body, and enable a good reading of these waves for analysis of the data. The impact device has to be robust enough to produce the stress wave that deforms the test body but not to deform the bars plastically, which will have to continue throughout the test within the elastic regime.
9

Projeto e construção de um dispositivo para ensaio de impacto em materiais, barra de compressão / Design and construction of a device for impact test materials, compression bar

Sérgio Roberto Todesco 17 November 2015 (has links)
Esta dissertação apresenta um projeto de um dispositivo para levantar dados característicos de materiais submetidos às altas taxas de deformação, dispositivo este que leva o nome do seu idealizador o engenheiro Inglês Sir Bertram Hopkinson. Mais especificamente, esta dissertação está inseparavelmente ligada ao desenvolvimento de um embalado para transporte de elementos radioativos como sendo uma das partes do escopo geral, de um projeto da CAPES em convênio com o Centro de Ciência e Tecnologia de Materiais - CCTM do, Instituto de Pesquisas Energéticas e Nucleares IPEN - CNEN/SP, autarquia associada à Universidade de São Paulo. O desenvolvimento do dispositivo faz parte do escopo de obtenção, e levantamento dos dados necessários para o projeto, e a construção do embalado. Esta dissertação versa sobre a concepção mecânica do dispositivo, importante, dividida em duas partes, dimensionamento das barras, que seriam a barra de impacto, a barra de entrada, e a barra de saída, e o dimensionamento do dispositivo de impacto. O dimensionamento das barras envolve conhecimentos do conceito de ondas elásticas em meios sólidos para que o comprimento das barras seja estimado de forma a servir de guia das ondas elásticas, que provocarão a deformação no corpo de prova, e possibilite a boa leitura dessas ondas para análise dos dados. O dispositivo de impacto, este tem que ser robusto o suficiente para produzir a onda de tensão que deforme o corpo de prova, mas não para deformar plasticamente as barras, que terão que continuar durante todo o teste dentro do regime elástico. / This dissertation presents a design of a device to collect characteristic data of materials submitted to the high strain rates, device that takes the name of its idealizer the English engineer Sir Bertram Hopkinson. More specifically, this dissertation is inseparably linked to the development of a package for the transport of radioactive elements as part of the general scope of a CAPES project in partnership with the Materials Science and Technology Center (CCTM), Nuclear and Energy Research Institute IPEN - CNEN / SP, autarchy associated with the University of São Paulo. The development of the device is part of the scope of procurement, and collection of data required for the design, and the construction of the packaging. This dissertation deals with the mechanical design of the device, important, divided into two parts, dimensioning of the bars, which would be the impact bar, the input and output bars and the design of the impact device. The sizing of the bars involves knowledge of the concept of elastic waves in solid media so that the length of the bars is estimated in order to serve as a guide for the elastic waves, which will cause deformation in the test body, and enable a good reading of these waves for analysis of the data. The impact device has to be robust enough to produce the stress wave that deforms the test body but not to deform the bars plastically, which will have to continue throughout the test within the elastic regime.
10

Investigation and Optimization of Connections in Timber Assemblies Subjected to Blast Loading

Viau, Christian 21 April 2020 (has links)
The majority of research on high strain-rate effects in timber structures has been limited to the study of the load-bearing members in isolation. Limited work has been conducted on timber connections and full-scale timber assemblies under blast loading, and these have generally been constrained to qualitative observations. In North America, the increasing prevalence of mid- and high-rise timber structures makes them susceptible to blast effects. In addition, questions remain on how to design and optimize these timber assemblies, including the connections, against blast loads, due in part to the limitations on comprehensive design provisions. The effects of far-field blast explosions were simulated using the University of Ottawa shock tube. A total of fifty-eight dynamic tests were conducted on connection-level and full-scale specimens. The research program aimed to investigate the behaviour of heavy-timber connections when subjected to simulated blast loads. The experimental results showed that connections with a main failure mechanism consisting of wood crushing experienced significant increases in dynamic peak load when compared to the static peak load. In contrast, connections where steel yielding and rupturing occurred experienced no statistically significant increase in dynamic peak load. Full-scale glulam specimens with bolted connections designed to yield via wood crushing and bolt bending performed better than those with overdesigned connections. Bolted connections which failed in splitting led to premature failure of the glulam assembly. Reinforcement with self-tapping screws allowed these bolted joints to fail in a combination of bolt yielding and wood crushing, and provided more ductility when compared to unreinforced specimens. Specially designed energy-absorbing connections significantly increased the energy dissipation capabilities of the timber assemblies. The basis of these connections was to allow for connection yielding while delaying failure of the wood member. This was achieved via elastoplastic connection behaviour, which effectively limited the load imparted onto the wood member. Based on the experimental results, limitations in the current Canadian blast provisions were highlighted and discussed. A two-degree-of-freedom blast analysis software was developed and validated using full-scale and connection-level experimental results and was found to adequately capture the system response with reasonable accuracy. Sensitivity analyses regarding the applicability of using single-degree-of-freedom analysis were presented and discussed.

Page generated in 0.094 seconds