• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Field plot conditions for the expression and selection of straw fibre concentration in oilseed flax

Burton, Alison Dana 30 August 2007
In Canada, flax (<i>Linum usitatissimum</i> L.) is grown for its seed oil. However, a major disadvantage associated with growing oilseed flax is that the straw is difficult to incorporate into the soil after harvest. Instead, the majority of flax straw is burned in the field, increasing the workload for farmers, as well as creating air pollution. Agronomic concerns are also associated with burning, since it leaves fields vulnerable to wind and water erosion. A small market exists for Canadian flax straw for making high quality paper products and some plastic composites. However, fibre-based and fibre-using industries are growing world wide, and flax straw fibre is becoming an important product. Flax straw fibre concentration varies among cultivars and environments. Consistently high fibre concentrations are essential if the fibre in oilseed flax is to become an important product for Canadian farmers. This study assembled the agronomic information necessary to select for increased straw fibre concentration in the Crop Development Centre (CDC) Flax Breeding Program. Three experiments were conducted to determine: how seeding rate and row spacing effects straw fibre concentration, the effects of seeding date on straw fibre concentration, and how nitrogen fertilizer rates effects straw fibre concentration. Seeding in mid-May at either an 18 or 36 cm row spacing at a seeding rate of 30 or 45 kg/ha resulted in high straw fibre concentration without reducing other important oilseed characteristics such as seed yield, oil content and straw fibre yield. Nitrogen fertilizer did not have an effect on either straw fibre concentration or straw fibre yield.
2

Field plot conditions for the expression and selection of straw fibre concentration in oilseed flax

Burton, Alison Dana 30 August 2007 (has links)
In Canada, flax (<i>Linum usitatissimum</i> L.) is grown for its seed oil. However, a major disadvantage associated with growing oilseed flax is that the straw is difficult to incorporate into the soil after harvest. Instead, the majority of flax straw is burned in the field, increasing the workload for farmers, as well as creating air pollution. Agronomic concerns are also associated with burning, since it leaves fields vulnerable to wind and water erosion. A small market exists for Canadian flax straw for making high quality paper products and some plastic composites. However, fibre-based and fibre-using industries are growing world wide, and flax straw fibre is becoming an important product. Flax straw fibre concentration varies among cultivars and environments. Consistently high fibre concentrations are essential if the fibre in oilseed flax is to become an important product for Canadian farmers. This study assembled the agronomic information necessary to select for increased straw fibre concentration in the Crop Development Centre (CDC) Flax Breeding Program. Three experiments were conducted to determine: how seeding rate and row spacing effects straw fibre concentration, the effects of seeding date on straw fibre concentration, and how nitrogen fertilizer rates effects straw fibre concentration. Seeding in mid-May at either an 18 or 36 cm row spacing at a seeding rate of 30 or 45 kg/ha resulted in high straw fibre concentration without reducing other important oilseed characteristics such as seed yield, oil content and straw fibre yield. Nitrogen fertilizer did not have an effect on either straw fibre concentration or straw fibre yield.

Page generated in 0.1737 seconds