1 |
The Geomorphic Influence of Agricultural Land Use on Stream Hydraulics and Biological FunctionPayn, Robert Alden 09 July 2004 (has links)
Agricultural land use near streams frequently results in long-term disturbance to woody riparian vegetation and an alteration of reach scale geomorphic structure. Such disturbances often result in increased fine sediment input to the stream along with direct changes in channel structure. The study described here was designed to quantify stream geomorphic changes associated with agriculture and their influence on reach scale transient storage hydraulics and sediment biological function. Six small streams in the Appalachian Mountains of western North Carolina were selected to compare 3 reaches with active near-stream agriculture to 3 forested reference reaches. The study site categories differed significantly in many structural and hydraulic properties including slope, sinuosity, sediment size, and transient storage extent. However, differences cannot be attributed to land use alone. Distinct disparity in slope suggests that many of the categorical differences between stream types may also reflect valley scale structure. Despite these larger scale controls, the abundance of suspendable fines varied substantially among agricultural stream substrates, possibly due to varied land-use practices. Suspendable fine sediments and valley slope explained 91 % of variability in transient storage exchange, and abundance of inorganic fine sediments explained 77 % of variability in sediment microcosm nitrate production. This study supports conclusions that reach-scale influence of fine sediments occurred within the context of larger-scale valley structure, with implications on stream hydraulics and biogeochemistry. / Master of Science
|
2 |
The effects of wildfire disturbance and streamside clearcut harvesting on instream wood and small stream geomorphology in south-central British ColumbiaScherer, Robert Andrew 05 1900 (has links)
Few field studies have assessed the temporal and spatial dynamics of wood in small streams (bankfull widths < 5 m) flowing through forest ecosystems dominated by stand replacing wildfires. Comparisons of instream wood loads associated with clearcut harvesting, wildfire, and undisturbed, old forests are also scarce. The two main objectives of this research were: (1) to document the temporal and spatial variability of wood and its geomorphic role in relation to stand development stage; and (2) to compare wood loads and its geomorphic role in relation to streamside clearcut harvesting, wildfires and older, undisturbed forest stands. This research focused on 38 small streams with gradients less than 14% situated in the plateau regions of south-central British Columbia, Canada.
A distinct temporal trend in wood loading was observed, with elevated volumes present 30-50 years subsequent to the wildfire disturbances following a “reverse J-shaped” trend in relation to time since the last major wildfire disturbance. The number of wood pieces was highly variable and few of the wood characteristics exhibited a significant trend in relation to time since the last major wildfire disturbance. Except at the smallest spatial scale (<3 m segments longitudinally along the stream) the spatial distribution of wood followed a random pattern with no trend, indicating that wood loads are related to local wood recruitment processes associated with episodic or chronic tree mortality and low wood transport.
Instream wood volumes were three times higher in streams recently (30 – 50 years ago) disturbed by wildfire as compared to the older riparian forest stands, confirming that wildfire disturbance is an important mechanism to recruit wood into streams. No significant differences in wood loads were identified between the streamside clearcut streams and the wildfire-disturbed or older, undisturbed streams. The lack of reductions in wood loads are likely related to the low transport capacity of our study streams, retention of non-merchantable trees and recruitment of slash from harvesting. A lack of morphologic variability was observed in relation to the disturbances indicating that the streams included in this study are relatively robust and unresponsive to wildfire or streamside clearcut harvesting disturbances.
|
3 |
The effects of wildfire disturbance and streamside clearcut harvesting on instream wood and small stream geomorphology in south-central British ColumbiaScherer, Robert Andrew 05 1900 (has links)
Few field studies have assessed the temporal and spatial dynamics of wood in small streams (bankfull widths < 5 m) flowing through forest ecosystems dominated by stand replacing wildfires. Comparisons of instream wood loads associated with clearcut harvesting, wildfire, and undisturbed, old forests are also scarce. The two main objectives of this research were: (1) to document the temporal and spatial variability of wood and its geomorphic role in relation to stand development stage; and (2) to compare wood loads and its geomorphic role in relation to streamside clearcut harvesting, wildfires and older, undisturbed forest stands. This research focused on 38 small streams with gradients less than 14% situated in the plateau regions of south-central British Columbia, Canada.
A distinct temporal trend in wood loading was observed, with elevated volumes present 30-50 years subsequent to the wildfire disturbances following a “reverse J-shaped” trend in relation to time since the last major wildfire disturbance. The number of wood pieces was highly variable and few of the wood characteristics exhibited a significant trend in relation to time since the last major wildfire disturbance. Except at the smallest spatial scale (<3 m segments longitudinally along the stream) the spatial distribution of wood followed a random pattern with no trend, indicating that wood loads are related to local wood recruitment processes associated with episodic or chronic tree mortality and low wood transport.
Instream wood volumes were three times higher in streams recently (30 – 50 years ago) disturbed by wildfire as compared to the older riparian forest stands, confirming that wildfire disturbance is an important mechanism to recruit wood into streams. No significant differences in wood loads were identified between the streamside clearcut streams and the wildfire-disturbed or older, undisturbed streams. The lack of reductions in wood loads are likely related to the low transport capacity of our study streams, retention of non-merchantable trees and recruitment of slash from harvesting. A lack of morphologic variability was observed in relation to the disturbances indicating that the streams included in this study are relatively robust and unresponsive to wildfire or streamside clearcut harvesting disturbances.
|
4 |
The effects of wildfire disturbance and streamside clearcut harvesting on instream wood and small stream geomorphology in south-central British ColumbiaScherer, Robert Andrew 05 1900 (has links)
Few field studies have assessed the temporal and spatial dynamics of wood in small streams (bankfull widths < 5 m) flowing through forest ecosystems dominated by stand replacing wildfires. Comparisons of instream wood loads associated with clearcut harvesting, wildfire, and undisturbed, old forests are also scarce. The two main objectives of this research were: (1) to document the temporal and spatial variability of wood and its geomorphic role in relation to stand development stage; and (2) to compare wood loads and its geomorphic role in relation to streamside clearcut harvesting, wildfires and older, undisturbed forest stands. This research focused on 38 small streams with gradients less than 14% situated in the plateau regions of south-central British Columbia, Canada.
A distinct temporal trend in wood loading was observed, with elevated volumes present 30-50 years subsequent to the wildfire disturbances following a “reverse J-shaped” trend in relation to time since the last major wildfire disturbance. The number of wood pieces was highly variable and few of the wood characteristics exhibited a significant trend in relation to time since the last major wildfire disturbance. Except at the smallest spatial scale (<3 m segments longitudinally along the stream) the spatial distribution of wood followed a random pattern with no trend, indicating that wood loads are related to local wood recruitment processes associated with episodic or chronic tree mortality and low wood transport.
Instream wood volumes were three times higher in streams recently (30 – 50 years ago) disturbed by wildfire as compared to the older riparian forest stands, confirming that wildfire disturbance is an important mechanism to recruit wood into streams. No significant differences in wood loads were identified between the streamside clearcut streams and the wildfire-disturbed or older, undisturbed streams. The lack of reductions in wood loads are likely related to the low transport capacity of our study streams, retention of non-merchantable trees and recruitment of slash from harvesting. A lack of morphologic variability was observed in relation to the disturbances indicating that the streams included in this study are relatively robust and unresponsive to wildfire or streamside clearcut harvesting disturbances. / Forestry, Faculty of / Graduate
|
5 |
A Rosgen Level III Analysis of Two Stream Restoration Projects Near Youngstown, OhioPoudel, Rajesh Kumar January 2010 (has links)
No description available.
|
6 |
Combining hydrologic modelling and boundary shear stress estimates to evaluate the fate of fine sediments in river Juktån : Impact of ecological flowsAndersson Nyberg, Adrian January 2018 (has links)
Altered flow regimes following river regulation can result in significant changes in river bed geomorphology and subsequent negative ecological impacts caused by re-suspended sediments deposited on the riverbed. This study aimed to evaluate the consequences of implementing an ecological flow regime on sediments accumulated within the regulated river Juktån. Sediments were sampled and analysed for particle size distribution to estimate sediment stability. Flow alteration following the ecological flow regime was analysed with HEC-RAS unsteady flow simulation serving as a basis for calculations of forces acting to erode or retain deposited sediments. Additional analyses regarding critical flow were made with HEC-RAS steady flow simulation. Results show that 4 out of 15 cross-sections analysed would have the potential to erode and re-suspend sediments. The estimated average critical flow for when sediments become unstable with potential to re-suspend is 17 m3/s. The total sediment inventory of the studied reach is ~25000 ton, with ~3000-ton sediments potentially eroding into re-suspension. This is approximately 3% of river Umeälvens annual 100 000 ton suspended sediments before being regulated. Results indicate that river bed heterogeneity in river Juktån could benefit from implementing the ecological flow regime while not mobilizing such amounts of fine sediments that would cause clogging effects downstream the site of interest. The study also introduces the erosion rate equation which compares the annual erosion between two different flow regimes.
|
Page generated in 0.2231 seconds