• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 85
  • 40
  • 25
  • 21
  • 15
  • 11
  • 11
  • 9
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 421
  • 150
  • 128
  • 57
  • 52
  • 44
  • 44
  • 43
  • 42
  • 41
  • 41
  • 40
  • 39
  • 39
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

EVALUATION OF THE ROTR 1: AN INNOVATIVE DEVICE TO REACTIVELY STRENGTHEN THE SHOULDER

Hirayama, Bradley Tomio Yet Kong 01 January 2018 (has links)
This study assesses the effectiveness of an innovative shoulder training and rehabilitation device, the Rotr 1. The device uses mechanically created motion to disturb the balance of muscular forces around the shoulder, thereby facilitating dynamic training of the muscles. The hypothesis is that random disturbances provided by the device would potentially in-crease shoulder muscle activation as users try to resist the device’s motion. To test the efficacy of the device, shoulder muscle activation from two groups (ten non-athletes and seven athletes), was assessed in three different shoulder positions and four different exercise conditions (aka configurations). Muscle activation of seven different shoulder muscles was recorded using electromyography (EMG). 3D motion capture was used to ensure repeatability of the positions during testing. ANOVA was done to assess the differences in muscle activation across groups, positions and exercise conditions. This device has the potential to improve performance and rehabilitation of overhead athletes, by increasing the body’s ability to effectively react and protect the shoulder.
72

Shear Strengthening of RC Beams Using Externally Bonded and Anchored FRP U-wraps

D'Souza, Clinton January 2016 (has links)
Externally bonded FRP U-wraps are a common shear strengthening configuration for RC beams, however premature debonding of the wraps is a major problem, which limits the effectiveness and efficiency of the FRP strengthening. In this investigation a new π-shape carbon anchor was used to fasten the FRP U-wraps to the concrete in an attempt to prevent/delay debonding of the wraps and increase their effectiveness. Fourteen large scale rectangular beams with a 1900 mm span, 400 mm height, and 170 mm width were tested in three-point bending with various configurations of FRP shear strengthening. Shear pre-cracks were introduced in the beams at angles of 30 and 45 degrees in an attempt to control the inclination angle of the shear crack and determine its effect on the FRP shear resistance. The FRP shear strengthening configurations included un-anchored U-wraps, U-wraps with anchors, U-wraps with horizontal strips, and full wraps. The results showed that the use of a variable shear crack inclination angle in the CSA S806-12 (2012) standard led to overestimated shear resistance predictions for beams with a single shear crack, therefore a conservative 45 degree shear crack inclination is recommended for design. The use of the proposed carbon anchors resulted in a 74% increase in shear strength over the un-anchored U-wrapped beams, while only using half the amount of FRP. The use of the anchors also resulted in a 286% increase in the ultimate FRP strain over the un-anchored U-wraps, and allowed the FRP wraps to achieve 58% of their rupture strain. The use of horizontal strips provided similar results to the anchors and may be used as a less labour intensive alternative, but this issue needs further investigation. / Dissertation / Master of Applied Science (MASc) / Damaged or older reinforced concrete structures can be rehabilitated by using externally bonded fibre-reinforced polymer (FRP) sheets, which are bonded to the concrete surface using an epoxy adhesive. For the case of shear strengthening of beams, it is common for FRP sheets to be wrapped around the sides and bottom of the beam, resembling a U-shape. The problem with this configuration is that under high levels of load the FRP sheets tend to peel off the concrete surface (debonding). This limits the effectiveness of the rehabilitation and results in the inefficient use of the FRP. A new method for anchoring the FRP sheets to the concrete surface is investigated in this research study. The use of a new in-situ π-shape anchor shows promising results, as it delays debonding and provides a large increase in strength with less FRP needed.
73

On The Use Of Polyurethane Matrix Carbon Fiber Composites For Strengthening Concrete Structures

Haber, Zachary 01 January 2010 (has links)
Fiber-reinforced polymer (FRP) composite materials have effectively been used in numerous reinforced concrete civil infrastructure strengthening projects. Although a significant body of knowledge has been established for epoxy matrix carbon FRPs and epoxy adhesives, there is still a need to investigate other matrices and adhesive types. One such matrix/adhesive type yet to be heavily researched for infrastructure application is polyurethane. This thesis investigates use of polyurethane matrix carbon fiber composites for strengthening reinforced concrete civil infrastructure. Investigations on mirco- and macro-mechanical composite performance, strengthened member flexural performance, and bond durability under environmental conditioning will be presented. Results indicate that polyurethane carbon composites could potentially be a viable option for strengthening concrete structures.
74

Muscle Strengthening Physical Activities and Depressive Symptoms: NHANES (National Health and Nutrition Examination Survey) from 1999 to 2005

Cangin, Causenge 20 May 2015 (has links)
No description available.
75

Mudstone Consolidation in the Presence of Seismicity

DeVore, Joshua R. 31 August 2016 (has links)
No description available.
76

Strengthening of Metallic Structures using Externally Bonded Fibre Reinforced Polymers Composite.

Lam, Dennis January 2007 (has links)
Today¿s engineers spend an increasing proportion of their time on the maintenance and retrofitting of existing structures. Many of these structures were designed for a purpose totally different from that for which they are now employed. The use of buildings has changed over the last few decades especially during the commercial boom in the 1990s and bridge structures are taking on more and more loads as traffic on the roads continues to rise dramatically.
77

Damping Behavior in Ferroelectric Reinforced Metal Matrix Composites

Poquette, Ben David 18 May 2005 (has links)
Ferroelectric-reinforced metal matrix composites (FR-MMCs) show promise as high damping materials for structural applications. Most structural materials are valued based on their stiffness and strength; however, stiff materials typically have limited inherent ability to dampen mechanical or acoustic vibrations. The addition of ferroelectric ceramic particles may also augment the strength of the matrix, creating a multifunctional composite. In this work, the damping behavior of FR-MMCs created by the addition of barium titanate (BaTiO3) discontinuous reinforcement in a bearing bronze (Cu-10w%Sn) matrix has been studied. It has been shown that even when combined with other traditional composite mechanisms, added damping ability has been achieved due to the ferroelectric nature of the reinforcement. FR-MMCs currently represent a material system capable of exhibiting increased damping ability, as compared to the structural metal matrix alone. / Master of Science
78

Influência da forma de seção transversal no confinamento de pilares de concreto armado encamisados com PRFC (polímero reforçado com fibras) / Influence of the cross section shape in the confinement of jacketed reinforced concrete columns with CFRP (carbon fiber reinforced polymer)

Sudano, Alexandre Luis 31 May 2005 (has links)
O efeito de confinamento do concreto em pilares submetidos à compressão axial traz diversos benefícios ao seu comportamento estrutural, dentre os quais destacam-se o aumento na resistência à compressão axial do concreto pela ação das pressões laterais, e a melhoria da ductilidade do elemento estrutural. Em função destas vantagens, o confinamento é uma das principais técnicas de reforço de pilares de concreto. Porém, dependendo da forma da seção transversal, a eficiência do reforço pode ficar comprometida em função da distribuição da pressão de confinamento. No caso de pilares de seção circular, esta distribuição é uniforme. Já em pilares de seção quadrada e retangular, existe concentração de tensão nos cantos da seção transversal, o que, no caso de reforço por encamisamento com PRFC, pode causar a ruptura prematura da camisa, resultando num reforço ineficiente. Com o intuito de considerar as diferentes configurações da distribuição da pressão de confinamento, utiliza-se um coeficiente de forma, que em seções diferentes da circular (para a qual este coeficiente é igual à unidade), minora o valor da pressão de confinamento, o qual é utilizado na previsão da carga de ruptura do pilar reforçado. Este trabalho tem como objetivo central o estudo de vários tipos de seção transversal com o intuito de avaliar a sua influência na eficiência do reforço e da ductilidade do elemento estrutural. Para tal, foram realizadas simulações experimentais com pilares de seção transversal circular, quadrada e retangular com os cantos arredondados, elíptica e uma seção composta por semicírculos. Os resultados demonstram que uma forma de seção transversal adequada é essencial para um bom desempenho do pilar reforçado, sendo assim, as seções transversais que apresentaram os melhores resultados foram a circular, a elíptica e a composta por semicírculos / The effect of the concrete confinement in columns submitted to the axial compression brings many benefits to its structural behavior, amongst them the increase of the axial compressive strength due to the action of the lateral pressures and the improvement of the ductility. In function of these advantages, the confinement is one of the main techniques for strengthening of concrete columns. However, depending on the shape of the cross section, the efficiency of the reinforcement can be impaired by the non-uniformity of the confinement pressure distribution. In the case of circular cross section columns, this distribution is uniform. Otherwise, in square and rectangular cross section columns, there is a pressure concentration at the cross section corners. In case of CFRP jackets, the pressure concentration leads to a premature rupture of the jacket, resulting in an inefficient reinforcement. Intending to consider the different confinement pressure distributions, a shape coefficient is applied to cross sections with distinguished shape from the circular one (for which this coefficient is equal to the unit), to correct the confinement pressure value. The corrected pressure is applied in theoretical evaluations of the column’s load carrying capacity. The main objective of work is to analyze the structural behavior of strengthened concrete columns with different shape cross-sections, evaluating the influences in the efficiency of the jacketing and in the ductility of the structural element. Experimental simulations were made in columns with the following cross section shapes: circular, square and rectangular with rounded corners, elliptical and a section composed by semicircles. The results demonstrated that an adequate shape of the cross-section is essential for a good performance of the strengthened columns. The cross sections that presented the best results were the circular, the elliptical and the one composed by semicircles
79

External strengthening of reinforced concrete pier caps

Bechtel, Andrew Joseph 17 October 2011 (has links)
The shear capacity of reinforced concrete pier caps in existing bridge support systems can be a factor which limits the capacity of an existing bridge. In their usual configuration, pier caps behave as deep beams and have the ability to carry load through tied arch action after the formation of diagonal cracks. Externally bonded fiber reinforced polymer (FRP) reinforcement has been shown to increase the shear capacity of reinforced concrete members which carry load through beam action. However, there is an insufficient amount of research to make it a viable strengthening system for beams which carry load through arch action, such as pier caps. Accordingly, this research was aimed at investigating the behavior of reinforced concrete pier caps through a coordinated experimental and analytical program and to recommend an external strengthening method for pier caps with perceived deficiencies in shear strength. The experimental study was performed on laboratory specimens based on an existing bridge in Georgia. A number of factors were examined, including size, percentage longitudinal reinforcement and crack control reinforcement. The results showed that increasing the longitudinal tension reinforcement increased the beam capacity by changing the shape of the tied arch. In contrast, the presence of crack control reinforcement did not change the point at which diagonal cracking occurred, but it did increase the ultimate capacity by reinforcing the concrete against splitting. The results of the experimental study were used in conjunction with a larger database to examine different analytical methods for estimating the ultimate capacity of deep beams, and a new method was developed for the design of external strengthening. Two specimens were tested with externally bonded FRP reinforcement applied longitudinally to increase the strength of the tension tie. The test results correlated well with the proposed method of analysis and showed that increasing the strength of the longitudinal tension tie is an effective way to increase the strength of a reinforced concrete deep beam.
80

Influência da forma de seção transversal no confinamento de pilares de concreto armado encamisados com PRFC (polímero reforçado com fibras) / Influence of the cross section shape in the confinement of jacketed reinforced concrete columns with CFRP (carbon fiber reinforced polymer)

Alexandre Luis Sudano 31 May 2005 (has links)
O efeito de confinamento do concreto em pilares submetidos à compressão axial traz diversos benefícios ao seu comportamento estrutural, dentre os quais destacam-se o aumento na resistência à compressão axial do concreto pela ação das pressões laterais, e a melhoria da ductilidade do elemento estrutural. Em função destas vantagens, o confinamento é uma das principais técnicas de reforço de pilares de concreto. Porém, dependendo da forma da seção transversal, a eficiência do reforço pode ficar comprometida em função da distribuição da pressão de confinamento. No caso de pilares de seção circular, esta distribuição é uniforme. Já em pilares de seção quadrada e retangular, existe concentração de tensão nos cantos da seção transversal, o que, no caso de reforço por encamisamento com PRFC, pode causar a ruptura prematura da camisa, resultando num reforço ineficiente. Com o intuito de considerar as diferentes configurações da distribuição da pressão de confinamento, utiliza-se um coeficiente de forma, que em seções diferentes da circular (para a qual este coeficiente é igual à unidade), minora o valor da pressão de confinamento, o qual é utilizado na previsão da carga de ruptura do pilar reforçado. Este trabalho tem como objetivo central o estudo de vários tipos de seção transversal com o intuito de avaliar a sua influência na eficiência do reforço e da ductilidade do elemento estrutural. Para tal, foram realizadas simulações experimentais com pilares de seção transversal circular, quadrada e retangular com os cantos arredondados, elíptica e uma seção composta por semicírculos. Os resultados demonstram que uma forma de seção transversal adequada é essencial para um bom desempenho do pilar reforçado, sendo assim, as seções transversais que apresentaram os melhores resultados foram a circular, a elíptica e a composta por semicírculos / The effect of the concrete confinement in columns submitted to the axial compression brings many benefits to its structural behavior, amongst them the increase of the axial compressive strength due to the action of the lateral pressures and the improvement of the ductility. In function of these advantages, the confinement is one of the main techniques for strengthening of concrete columns. However, depending on the shape of the cross section, the efficiency of the reinforcement can be impaired by the non-uniformity of the confinement pressure distribution. In the case of circular cross section columns, this distribution is uniform. Otherwise, in square and rectangular cross section columns, there is a pressure concentration at the cross section corners. In case of CFRP jackets, the pressure concentration leads to a premature rupture of the jacket, resulting in an inefficient reinforcement. Intending to consider the different confinement pressure distributions, a shape coefficient is applied to cross sections with distinguished shape from the circular one (for which this coefficient is equal to the unit), to correct the confinement pressure value. The corrected pressure is applied in theoretical evaluations of the column’s load carrying capacity. The main objective of work is to analyze the structural behavior of strengthened concrete columns with different shape cross-sections, evaluating the influences in the efficiency of the jacketing and in the ductility of the structural element. Experimental simulations were made in columns with the following cross section shapes: circular, square and rectangular with rounded corners, elliptical and a section composed by semicircles. The results demonstrated that an adequate shape of the cross-section is essential for a good performance of the strengthened columns. The cross sections that presented the best results were the circular, the elliptical and the one composed by semicircles

Page generated in 0.0687 seconds