1 |
Cloning and Characterisation of the Human SinRIP ProteinsSchroder, Wayne Ashley, n/a January 2003 (has links)
This thesis describes the cloning and characterisation of a novel human gene and its protein products, which have been designated SAPK- and Ras-interacting protein (SinRIP). SinRIP shares identity with JC310, a partial human cDNA that was previously identified a candidate Ras-inhibitor (Colicelli et al., 1991, Proc Natl Acad Sci USA 88, p. 2913). In this study, it was shown that SinRIP is a member of an orthologous family of proteins that is conserved from yeast to mammals and contains proteins involved in Ras- and SAPK-mediated signalling pathways. Comparison of this family of proteins showed that human SinRIP contains a potential Ras-binding domain (RBD; residues 279-354), a PH-like domain (PHL; 376-487), and a highly conserved novel region designated the CRIM (134-265). Several other potential targeting sites, such as nuclear localisation signals and target sites for kinases, were identified within the SinRIP sequence. The human SinRIP gene is unusually large (>280 kbp) and is located on chromosome 9 at 9q34. SinRIP mRNA was detected in a wide variety of tissue-types and cell lines by RT-PCR, and the SinRIP sequences in the EST database were derived from an diverse array of tissues, suggesting a widespread or ubiquitous expression. Northern blot analysis revealed the highest levels in skeletal muscle and heart tissue. However, the steady-state levels of SinRIP mRNA vary greatly from cell to cell, and SinRIP expression is likely to be regulated at multiple post-transcriptional levels. It was shown that SinRIP mRNA is likely to be translated inefficiently by the normal cap-scanning mechanism, due to the presence of a GC-rich and structured 5-UTR, which also contains upstream ORFs. Alternative polyadenylation signals in the SinRIP 3-UTR can be used, resulting in the expression of short and long SinRIP mRNA isoforms. Several potential A/T-rich regulatory elements were also identified in SinRIP mRNA, which may target specific SinRIP mRNA isoforms for rapid degradation. Importantly, it was shown that SinRIP mRNA is alternatively spliced, resulting in the production of distinct SinRIP protein isoforms. Three isoforms, SinRIP2-4, were definitively identified by RT-PCR and full-length cloning. The SinRIP isoforms contain deletions in conserved regions, and are likely to have biochemical characteristics that are different to full-length SinRIP1. SinRIP2 is C-terminally truncated and lacks the PHL domain and part of the RBD, and relatively high levels of SinRIP2 expression arelikely to occur in kidneys. The RBD is disrupted in SinRIP3, but all other domains are intact, and RT-PCR analyses suggest that SinRIP3 is present in some cells at levels comparable to SinRIP1. A rabbit polyclonal antiserum against SinRIP was generated and detected endogenous SinRIP proteins. Using the anti-SinRIP antibody in immunoblots, multiple SinRIP isoforms were observed in most cell types. SinRIP1 and another endogenous SinRIP protein, likely to be SinRIP3, were detected in most cell lines, and appear to be are the major SinRIP proteins expressed in most cells. The subcellular localisation of both recombinant and endogenous SinRIP proteins was investigated by immunofluorescence assays and biochemical fractionation. Recombinant SinRIP1 protein was found in the cytoplasm and associated with the plasma membrane. In contrast, the SinRIP2 protein was predominantly nuclear, with only low-level cytoplasmic staining observed. The endogenous SinRIP proteins, likely to comprise these and other SinRIP isoforms, were found in both the nucleus and cytoplasm. SinRIP1 interacted with GTP-bound (active) Ras, but not GDP-bound (inactive) Ras, in an in vitro assay, and also co-localised with activated H- and K-Ras in cells. The binding profile observed is typical of Ras-effectors, and SinRIP did not inhibit signalling by the Ras proteins, suggesting that it is not likely to be a Ras-inhibitor. It was also shown that SinRIP1 and SinRIP2 both interact and colocalise with c-Jun NH2- terminal kinase (JNK). Both SinRIP proteins were able to recruit JNK to their respective sub-cellular compartments. These interactions suggest an adaptor role for SinRIP in the Ras and/or JNK pathways. In addition, Sam68 was isolated as a SinRIP-binding protein in a yeast two-hybrid screen. Sam68 was shown to colocalise with SinRIP2 and endogenous SinRIP proteins, but not SinRIP1. Further colocalisation studies showed that endogenous SinRIP proteins localise in nuclear structures that may be associated with pre-mRNA splicing. Likely functions for SinRIP, as indicated by experimental results and studies of the orthologues of SinRIP in other species, are discussed.
|
2 |
The Rtg1 and Rtg3 proteins are novel transcription factors regulated by the yeast hog1 mapk upon osmotic stressNoriega Esteban, Núria 27 February 2009 (has links)
La adaptación de la levadura Saccharomyces cerevisiae a condiciones de alta osmolaridad está mediada por la vía de HOG ((high-osmolarity glycerol). La activación de esta vía induce una serie de respuestas que van a permitir la supervivencia celular en respuesta a estrés. La regulación génica constituye una respuesta clave para dicha supervivencia. Se han descrito cinco factores de transcripción regulados por Hog1 en respuesta a estrés osmótico. Sin embargo, éstos no pueden explicar la totalidad de los genes regulados por la MAPK Hog1. En el presente trabajo describimos cómo el complejo transcripcional formado por las proteínas Rtg1 y Rtg3 regula, a través de la quinasa Hog1, la expresión de un conjunto específico de genes. Hog1 fosforila Rtg1 y Rtg3, aunque ninguna de estas fosforilaciones son esenciales para regulación transcripcional en respuesta a estrés. Este trabajo también muestra cómo la deleción de proteínas RTG provoca osmosensibilidad celular, lo que indica que la integridad de la vía de RTG es esencial para la supervivencia celular frente a un estrés osmótico. / In Saccharomyces cerevisiae the adaptation to high osmolarity is mediated by the HOG (high-osmolarity glycerol) pathway, which elicits different cellular responses required for cell survival upon osmostress. Regulation of gene expression is a major adaptative response required for cell survival in response to osmotic stress. At least five transcription factors have been reported to be controlled by the Hog1 MAPK. However, they cannot account for the regulation of all of the genes under the control of the Hog1 MAPK. Here we show that the Rtg1/3 transcriptional complex regulates the expression of specific genes upon osmostress in a Hog1-dependent manner. Hog1 phosphorylates both Rtg1 and Rtg3 proteins. However, none of these phosphorylations are essential for the transcriptional regulation upon osmostress. Here we also show that the deletion of RTG proteins leads to osmosensitivity at high osmolarity, suggesting that the RTG-pathway integrity is essential for cell survival upon stress.
|
3 |
SCF cdc4 regulates msn2 and msn4 dependent gene expression to counteract hog1 induced lethalityVendrell Arasa, Alexandre 16 January 2009 (has links)
L'activació sostinguda de Hog1 porta a una inhibició del creixement cel·lular. En aquest treball, hem observat que el fenotip de letalitat causat per l'activació sostinguda de Hog1 és parcialment inhibida per la mutació del complexe SCFCDC4. La inhibició de la mort causada per l'activació sostinguda de Hog1 depèn de la via d'extensió de la vida. Quan Hog1 s'activa de manera sostinguda, la mutació al complexe SCFCDC4 fa que augmenti l'expressió gènica depenent de Msn2 i Msn4 que condueix a una sobreexpressió del gen PNC1 i a una hiperactivació de la deacetilassa Sir2. La hiperactivació de Sir2 és capaç d'inhibir la mort causada per l'activació sostinguda de Hog1. També hem observat que la mort cel·lular causada per l'activació sostinguda de Hog1 és deguda a una inducció d'apoptosi. L'apoptosi induïda per Hog1 és inhibida per la mutació al complexe SCFCDC4. Per tant, la via d'extensió de la vida és capaç de prevenir l'apoptosi a través d'un mecanisme desconegut. / Sustained Hog1 activation leads to an inhibition of cell growth. In this work, we have observed that the lethal phenotype caused by sustained Hog1 activation is prevented by SCFCDC4 mutants. The prevention of Hog1-induced cell death by SCFCDC4 mutation depends on the lifespan extension pathway. Upon sustained Hog1 activation, SCFCDC4 mutation increases Msn2 and Msn4 dependent gene expression that leads to a PNC1 overexpression and a Sir2 deacetylase hyperactivation. Then, hyperactivation of Sir2 is able to prevent cell death caused by sustained Hog1 activation. We have also observed that cell death upon sustained Hog1 activation is due to an induction of apoptosis. The apoptosis induced by Hog1 is decreased by SCFCDC4 mutation. Therefore, lifespan extension pathway is able to prevent apoptosis by an unknown mechanism.
|
Page generated in 0.0955 seconds