Spelling suggestions: "subject:"stressessrelaxation"" "subject:"stresslessrelaxation""
41 |
BODY ARMOR INDUCED CHANGES IN THE TRUNK MECHANCIAL AND NEUROMUSCULAR BEHAVIORTromp, Rebecca Leigh 01 January 2015 (has links)
While military body armor is used among warfighters for protection on and off the battlefield, it has been suggested to impede performance and act as a risk factor for the development of musculoskeletal disorders, especially low back pain. Apart from personal suffering, low back pain in soldiers is a great economic burden on the US economy. The objective of this study was to quantify the changes in trunk mechanical and neuromuscular behavior following prolonged exposure to body armor compared to exposure without. A crossover study design was used where 12 sex-balanced participants completed a series of tests before and after 45 minutes of treadmill walking with and without body armor. The tests included range of motion, isometric trunk tests, sudden perturbations, and stress relaxation. As a whole, exposure duration considered in this study resulted in no significant differences in performance between armor and no armor conditions. However, comparing the effects of body armor among the sex-differentiated groups showed a body armor -induced increase in range of trunk motion in the sagittal plane among females (p = 0.0018) and a decrease in pelvic range of motion in the transverse plane among both males (p=0.025) and females (p=0.004).
|
42 |
Short-term biofeedback-assisted relaxation in persons with rheumatoid arthritis /Stucky-Ropp, Renée C. January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves [80]-101). Also available on the Internet.
|
43 |
Short-term biofeedback-assisted relaxation in persons with rheumatoid arthritisStucky-Ropp, Renée C. January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves [80]-101). Also available on the Internet.
|
44 |
Protocols for preconditioning of patellar tendon for anterior cruciate ligament reconstruction stress relaxation vs. creep /Crawford, Richard Lee, January 2008 (has links)
Thesis (M.S.)--Mississippi State University. Department of Agricultural and Biological Engineering. / Title from title screen. Includes bibliographical references.
|
45 |
LABORATORY SCALE CONCEPT VALIDATION AND EVALUATION OF COMPROMISING PLANT NODAL INTEGRITY AS A MEANS TO INCREASE BALE DENSITYTurner, Aaron P 01 January 2014 (has links)
Transportation costs represent a significant role in the economics of packaged hay and biomass crops. The material’s low bulk density limits transportation efficiency. Density is currently limited by the ability of the baling twine to withstand the expansion forces generated by the baled material shortly after it is ejected from the bale chamber. It was hypothesized that compromising the structure of the plant, particularly the plant nodes could reduce the amount of energy stored in the material as it is compressed and thereby reduce the material’s elastic response to compression. Literature pertinent to the biomass material’s behavior in compression was reviewed. Bulk samples of switchgrass and miscanthus were subject to uniaxial compression, and the required pressure needed to obtain a target density of 256 kg/m3 was compared on a wet and dry density basis. Both switchgrass and miscanthus showed a statistically significant decrease in the required compression pressure, and the interaction between the moisture level and required pressure was also significant. Existing models for the pressure density relationship of compressed bulk material were evaluated for suitability. Individual nodes and internode sections were subject to radial compression and the apparent modulus of elasticity and maximum contact stress were determined.
|
46 |
Stress and Structure Evolution during Cu/Au(111) -(22 X√3) Heteroepitaxy: An In-Situ Study with UHV-STMJanuary 2012 (has links)
abstract: This research focuses on the stress and structure evolution observed in-situ during the earliest stages of thin film growth in Cu on Au(111)-reconstruction. For the research, an ultra high vacuum-scanning tunneling microscopy (UHV-STM) system was modified to have the additional capabilities of in-situ deposition and in-situ stress evolution monitoring. The design and fabrication processes for the modifications are explained in detail. The deposition source enabled imaging during the deposition of Cu thin films, while also being columnar enough to avoid negatively impacting the function of the microscope. It was found that the stress-induced changes in piezo voltage occurred over a substantially longer time scale and larger piezo scale than used during imaging, allowing for the deconvolution of the two sources of piezo voltage change. The intrinsic stress evolution observed at the onset of Cu growth was tensile in character and reached a maximum of 0.19 N/m at approximately 0.8ML, with an average tensile slope of 1.0GPa. As the film thickness increased beyond 0.8 ML, the stress became less tensile as the observation of disordered stripe and trigon patterns of misfit dislocations began to appear. The transport of atoms from the surface of enlarged Cu islands into the strained layer played an important role in this stage, because they effectively reduce the activation barrier for the formation of the observed surface structures. A rich array of structures were observed in the work presented here including stripe, disordered stripe and trigon patterns co-existing in a single Cu layer. Heteroepitaxial systems in existing literature showed a uniform structure in the single layer. The non-uniform structures in the single layer of this work may be attributed to the room temperature Cu growth, which can kinetically limit uniform pattern formation. The development of the UHV-STM system with additional capabilities for this work is expected to contribute to research for the stress and structure relationships of many other heteroepitaxial systems. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2012
|
47 |
Analysis of Ni and Fe-based Alloys for Turbine Seal Ring ApplicationsShe, Dawei 20 March 2018 (has links)
Metal sealing rings have been used widely in compressors, turbines and hydraulic devices. Such rings can extend out due to elasticity, and keep close contact with the valve wall, resulting in the formation of a functional seal under pressure. In this project, the failure of metal sealing rings is considered. Sealing component failure due to stress relaxation can threaten the safety of the whole steam turbine. The object of this study was to examine the stress relaxation response and corresponding changes in microstructure of metal sealing rings used in nuclear steam turbine under high temperature and applied stress. The two kinds of sealing ring samples were selected for GH4145 and GH2132.
In this paper, all samples were tested by accelerated simulation experiment. The test temperature was controlled at 400℃, 600℃, and 800℃. The 400℃ experiments lasted for 10, 20, 30 and 40 hours, while the 600℃ and 800℃ experiments lasted for 5, 10, 15 and 20 hours. The surface morphology was observed by metallographic analysis. It was found that the two kinds of sealing ring samples presented with a continuous development of grain coarsening and a decrease of the twins when time and test temperature were increased. The prolongation of time and increase of test temperature will drive the grain coarsening and reduce the twins faster. Many precipitates and inclusions were observed on the surface. The composition of precipitation was examined by scanning electron microscopy (SEM). It was further studied by testing samples with applied stress. The differences between the two tests and their influence on mechanical properties are discussed. The grain coarsening and twinning in the alloy will reduce the stress relaxation resistance of the material. Additionally, the precipitates and inclusions in the alloy may adversely affect the stress relaxation performance. Sealing rings using the nickel-based superalloys have stronger anti-stress relaxation performance than sealing rings made of iron-based superalloys.
|
48 |
Deformações dependentes do tempo em muros de solo reforçado com geotêxteis / Time-dependent deformations in geotextile reinforced soil wallsCarina Maia Lins Costa 17 December 2004 (has links)
Este trabalho apresenta um estudo sobre deformações de geotêxteis ao longo do tempo, considerando interações entre reforço e solo confinante em muros de solo reforçado. O programa experimental desenvolvido para esse fim envolveu duas etapas básicas. Na primeira etapa, um novo equipamento foi desenvolvido na Escola de Engenharia de São Carlos/USP, para a realização de ensaios de fluência com um elemento de solo reforçado. O equipamento desenvolvido permite simular o mecanismo típico de transferência de carga em estruturas de solo reforçado, isto é, o solo solicita o geotêxtil. Esse equipamento também possibilita que solo e geotêxtil apresentem deformações ao longo do tempo de forma interativa. Nessa etapa, o programa de ensaios foi conduzido utilizando-se uma areia pura e um geotêxtil de polipropileno. Na segunda etapa deste trabalho, modelos de muros de solo reforçado foram ensaiados em centrífuga na Universidade do Colorado em Boulder, EUA. Os referidos modelos foram construídos utilizando-se uma areia e mantas de poliéster e de polipropileno. Alguns modelos foram carregados até a ruptura com acréscimo de aceleração, enquanto outros foram observados, no decorrer do tempo, sob aceleração constante. Nos ensaios para investigação de fluência, deformações significativas foram observadas, ocorrendo, inclusive, a manifestação de ruptura em determinados modelos, após algumas horas de ensaio. Os ensaios realizados nas duas etapas do trabalho revelaram aspectos importantes relativos à interação solo-reforço. Com base na interpretação dos resultados experimentais, apresenta-se uma discussão sobre mecanismos de deformação, em função do tempo, em muros de solo reforçado. / This thesis presents a study on the time- ependent deformations of geotextiles in reinforced soil walls considering the long-term interactive behavior between the reinforcement and the confining soil. The experimental program comprised two distinct phases. In the first phase, a new equipment was designed and constructed at the School of Engineering at Sao Carlos/USP, Brazil, in an attempt to perform creep tests with an element of reinforced soil. This equipment simulates the typical load transfer mechanism in reinforced soil structures, that is, the load is transferred from the soil to the reinforcement. This equipment also allows long-term interactive deformations between the soil and the geotextile. The testing program of this phase was conducted using a pure dry sand and a polypropylene geotextile. In the second phase of this research, models of reinforced soil walls were tested in a centrifuge facility at the University of Colorado at Boulder, USA. The models were built using a pure dry sand and a polyester or polypropylene geotextile. The models were either loaded until failure increasing the centrifugal acceleration or tested under constant acceleration. Considerable strains were observed in the creep tests, and some of the models failed after a few hours. The testing programs carried out in this study revealed important aspects of the soil-reinforcement interaction. Based on the analyses of the experimental results a broad discussion on long-term deformation mechanisms in reinforced soil walls is made herein.
|
49 |
Biofeedback Training During Stress StimulationSpurgin, Raymon David 08 1900 (has links)
The assumption that EMG biofeedback cultivates an antistress response was tested under stress conditions while investigating the comparative efficacy of low versus high arousal treatment strategies. Biofeedback-assisted, cue-controlled relaxation training was used as the low arousal treatment strategy for half of the 20 normal subjects used in the study. The other half received a high arousal treatment strategy which used the same training in combination with an avoidance conditioning procedure. In this procedure mild electric shock was used as contingent aversive stimulation designed to reinforce relaxation responses. Both groups received four in-lab training sessions with a 4-day interim of home practice of cuecontrolled relaxation prior to the last in-lab training session. Pretraining assessment consisted of four 10-minute periods of alternating no-stress and stress conditions. Mild electric shock and loud tones were used as stressors. Posttraining assessment was identical to pre training except subjects employed self-directed, cue-controlled relaxation rather than self-directed relaxation based on instructions without training. Frontal EMG, subjective mental and muscle tension ratings, and behavioral observations of relaxation behavior served as dependent measures during pre- and posttraining assessment. EMG readings were used during in-lab training and the two subjective rating scales were used during home practice.
|
50 |
STUDIES ON NONLINEAR VISCOELASTIC BEHAVIOR OF HIGHLY ENTANGLED POLYMER SYSTEMS / 高度にからみあった高分子系の非線形粘弾性挙動に関する研究Yoshikawa, Katsuyuki 23 March 2020 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(工学) / 乙第13337号 / 論工博第4186号 / 新制||工||1740(附属図書館) / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 瀧川 敏算, 教授 中村 洋, 教授 古賀 毅 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
Page generated in 0.0819 seconds