• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Three-dimensional modeling of rigid pavement

Beegle, David J. January 1998 (has links)
No description available.
12

Estudo da resistência e da deformabilidade da alvenaria de blocos de concreto submetida a esforços de compressão / Study of strength and curved stress/strain relationship of blockwork masonry walls under compression

Juste, Andrea Elizabeth 03 August 2001 (has links)
O estudo da resistência à compressão e da deformabilidade de paredes de alvenaria de blocos de concreto é de fundamental importância para a caracterização desse material e o desenvolvimento de análises de estruturas compostas por esse tipo de painel. Este trabalho trata desse tema, objetivando prever com maior acuidade os principais parâmetros de deformação e de resistência de paredes de alvenaria de blocos de concreto, a saber: resistência à compressão e módulo de elasticidade longitudinal nas direções paralela e perpendicular à junta de assentamento. Foi desenvolvido um trabalho experimental para estimar a influência da resistência dos blocos, da resistência da argamassa e da direção de aplicação de forças no comportamento mecânico da alvenaria de blocos de concreto não-grauteada, quando submetida a esforços de compressão. Para tanto, realizaram-se ensaios de laboratório em blocos, argamassas, prismas de três blocos e paredinhas com dimensões de 80 cm x 80 cm. Por inferência estatística não foram obtidas correlações aceitáveis entre as variáveis estudadas. Porém, obtiveram-se tendências de comportamento dos corpos de prova estudados, confirmando a influência das características da argamassa e do bloco no comportamento estrutural da alvenaria quando submetida a esforços de compressão / The study of strength and the curved stress/strain relationship of blockwork masonry walls is basic for the material characterization and the development of structural analysis of blockwork walls. This work deals with that subject, aiming at the evaluation of the main elastic parameters and the strength of concrete blockwork walls: the compressive strength and modulus of elasticity for masonry in two orthogonal directions, parallel and perpendicular to bed joints. An experimental program was developed to evaluate the influence of the strength of blocks and mortar, and the load application direction on the mechanical behavior of ungrouted concrete block masonry under compression. A series of laboratory tests was carried out with blocks, mortar, prisms of three blocks and wallets (80 cm x 80 cm). It was impossible to obtain acceptable correlations of the defined variables, using statistical inference. However, tendencies of the specimens behavior were obtained, confirming the influence of mortar and block properties on the structural behavior of concrete blockwork walls under compression
13

Flexural Analysis and Design of Textile Reinforced Concrete

Soranakom, Chote, Mobasher, Barzin 03 June 2009 (has links) (PDF)
A model is presented to use normalized multi-linear tension and compression material characteristics of strain-hardening textile reinforced concrete and derive closed form expressions for predicting moment-curvature capacity. A set of design equations are derived and simplified for use in spreadsheet based applications. The model is applicable for both strain-softening and strainhardening materials. The predictability of the simplified model is checked by model calibration and development of design charts for moment capacity and stress developed throughout the cross section of a flexural member. Model is calibrated by predicting the results of Alkali Resistant Glass and Polyethylene fabrics. A case for the flexural design of Glass Fiber Reinforced Concrete (GFRC) specimen as a simply supported beam subjected to distributed load is used to demonstrate the design procedure.
14

Dynamic properties of soils with non-plastic fines

Umberg, David, 1987- 18 June 2012 (has links)
The results from an experimental study on the dynamic properties of sand with nonplastic silt are presented. Combined resonant column and torsional shear equipment is used to evaluate the effects of confining pressure, shearing strain, frequency, and number of cycles of loading on the dynamic properties of silty sand. The goal of this study is to determine if relationships in the literature for sands and gravels are accurate for predicting the shear modulus and material damping characteristics of soil with nonplastic fines or if the incorporation of a fines content parameter improves predictions. This goal was primarily accomplished by reconstituting and testing samples of an alluvial deposit from Dillon Dam, Dillon, Colorado according to predetermined gradation curves with variable amounts of non-plastic fines. Among the findings of this investigation are: (1) soil parameters such as Cu and D50 can be related to dynamic properties of soils with up to 25% fines, (2) the effects of non-plastic fines on the small-strain dynamic properties of soils are not very pronounced for soils with less than 25% fines, and (3) an increase in the amount of non-plastic fines in uniform soils or soils with more than 25% fines generally results in lower values of small-strain shear modulus, higher values of small-strain material damping, and more linear G/Gmax - log([gamma]) and D - log([gamma]) curves. The effect of non-contacting, larger granular particles in a finer soil matrix is also investigated along with the impact of removing larger particles from laboratory samples. / text
15

Estudo da resistência e da deformabilidade da alvenaria de blocos de concreto submetida a esforços de compressão / Study of strength and curved stress/strain relationship of blockwork masonry walls under compression

Andrea Elizabeth Juste 03 August 2001 (has links)
O estudo da resistência à compressão e da deformabilidade de paredes de alvenaria de blocos de concreto é de fundamental importância para a caracterização desse material e o desenvolvimento de análises de estruturas compostas por esse tipo de painel. Este trabalho trata desse tema, objetivando prever com maior acuidade os principais parâmetros de deformação e de resistência de paredes de alvenaria de blocos de concreto, a saber: resistência à compressão e módulo de elasticidade longitudinal nas direções paralela e perpendicular à junta de assentamento. Foi desenvolvido um trabalho experimental para estimar a influência da resistência dos blocos, da resistência da argamassa e da direção de aplicação de forças no comportamento mecânico da alvenaria de blocos de concreto não-grauteada, quando submetida a esforços de compressão. Para tanto, realizaram-se ensaios de laboratório em blocos, argamassas, prismas de três blocos e paredinhas com dimensões de 80 cm x 80 cm. Por inferência estatística não foram obtidas correlações aceitáveis entre as variáveis estudadas. Porém, obtiveram-se tendências de comportamento dos corpos de prova estudados, confirmando a influência das características da argamassa e do bloco no comportamento estrutural da alvenaria quando submetida a esforços de compressão / The study of strength and the curved stress/strain relationship of blockwork masonry walls is basic for the material characterization and the development of structural analysis of blockwork walls. This work deals with that subject, aiming at the evaluation of the main elastic parameters and the strength of concrete blockwork walls: the compressive strength and modulus of elasticity for masonry in two orthogonal directions, parallel and perpendicular to bed joints. An experimental program was developed to evaluate the influence of the strength of blocks and mortar, and the load application direction on the mechanical behavior of ungrouted concrete block masonry under compression. A series of laboratory tests was carried out with blocks, mortar, prisms of three blocks and wallets (80 cm x 80 cm). It was impossible to obtain acceptable correlations of the defined variables, using statistical inference. However, tendencies of the specimens behavior were obtained, confirming the influence of mortar and block properties on the structural behavior of concrete blockwork walls under compression
16

A Dynamical Approach to Plastic Deformation of Nano-Scale Materials : Nano and Micro-Indentation

Srikanth, K 07 1900 (has links) (PDF)
Recent studies demonstrate that mechanical deformation of small volume systems can be significantly different from those of the bulk. One such interesting length scale dependent property is the increase in the yield stress with decrease in diameter of micrometer rods, particularly when the diameter is below a micrometer. Intermittent flow may also result when the diameter of the rods is decreased below a certain value. The second such property is the intermittent plastic deformation during nano-indentation experiments. Here again, the instability manifests due to smallness of the sample size, in the form of force fluctuations or displacement bursts. The third such length scale dependent property manifests as ’smaller is stronger’ property in indentation experiments on thin films, commonly called as the indentation size effect (ISE). More specifically, the ISE refers to the increase in the hardness with decreasing indentation depth, particularly below a fraction of a micrometer depth of indentation. The purpose of this thesis is to extend nonlinear dynamical approach to plastic deformation originally introduced by Anantha krishna and coworkers in early 1980’s to nano and micro-indentation process. More specifically, we address three distinct problems : (a) intermittent force/load fluctuations during displacement controlled mode of nano-indentation, (b) displacement bursts during load controlled mode of nano-indentation and (c) devising an alternate framework for the indentation size effect. In this thesis, we demonstrate that our approach predicts not just all the generic features of nano-and micro-indentation and the ISE, the predicted numbers also match with experiments. Nano-indentation experiments are usually carried-out either in a displacement controlled (DC) mode or load controlled (LC) mode. The indenter tip radius typically ranges from few tens of nanometer to few hundreds of nanometers-meters. Therefore, the indented volume is so small that the probability of finding a dislocation is close to zero. This implies that dislocations must be nucleated for further plastic deformation to proceed. This is responsible for triggering intermittent flow as indentation proceeds. While several load drops are seen beyond the elastic limit in the DC controlled experiments, several displacement jumps are seen in the LC experiments. In both cases, the stress corresponding to load maximum on the elastic branch is close to the theoretical yield stress of an ideal crystal, a feature attributed to the absence of dislocations in the indented volume. Hardness is defined as the ratio of the load to the imprint area after unloading and is conventionally measured by unloading the indenter from desired loads to measure the residual plastic imprint area. Then, the hardness so calculated is found to increase with decreasing indentation depth. However, such size dependent effects cannot be explained on the basis of conventional continuum plasticity theories since all mechanical properties are independent of length scales. Early theories suggest that strong strain gradients exist under the indenter that require geometrically necessary dislocations (GNDs) to relax the strain gradients. In an effort to explain the the size effect, these theories introduce a length scale corresponding to the strain gradients. One other feature predicted by subsequent models of the ISE is the linear relation between the square of the hardness and the inverse of the indentation depth. Early investigations on the ISE did recognize that GNDs were required to accommodate strain gradients and that the hardness H is determined by the sum of the statistically stored dislocation (SSD) and GND densities. Following these steps, Nix and Gao derived an expression for the hardness as a function of the indentation depth z. The relevant variables are the SSD and GND densities. An expression for the GND density was obtained by assuming that the GNDs are contained within a hemispherical volume of mean contact radius. The authors derive an expression for the hardness H as a function of indentation depth z given by [ HH 0 ]2 = 1+ zz ∗ . The intercept H0 represents the hardness arising only from SSDs and corresponds to the hardness in the limit of large sample size. The slope z ∗ can be identified as the length scale below which the ISE becomes significant. The authors showed that this linear relation was in excellent agreement with the published results of McElhaney et al for cold rolled polycrystalline copper and single crystals of copper, and single crystals of silver by Ma and Clarke. Subsequent investigations showed that the linear relationship between H2 verses 1/z breaks down at small indentation depths. Much insight into nano-indentation process has come from three distinct types of studies. First, early studies using bubble raft indentation and later studies using colloidal crystals (soft matter equivalent of the crystalline phase) allowed visualization of dislocation nucleation mechanism. Second, more recently, in-situ transmission electron microscope studies of nano-indentation experiments have been useful in understanding the dislocation nucleation mechanism in real materials. Third, considerable theoretical understanding has come largely from various types of simulation studies such as molecular dynamics (MD) simulations, dis¬location dynamics simulations and multiscale modeling simulations (using MD together with dislocation dynamics simulations). A major advantage of simulation methods is their ability to include a range of dislocation mechanisms participating in the evolution of dislocation microstructure starting from the nucleation of a dislocation, its multiplication, formation of locks, junctions etc. However, this advantage is offset by the serious limitations set by short time scales inherent to the above mentioned simulations and the limited size of simulated volumes that can be implemented. Thus, simulation approaches cannot impose experimental parameters such as the indentation rates or radius of the indenter and thickness of the sample, for example in MD simulations. Indeed, the imposed deformation rates are often several orders of magnitude higher than the experimental rates. Consequently, the predicted values of force, indentation depth etc., differ considerably from those reported by experiments. For these reasons, the relevance of these simulations to real materials has been questioned. While several simulations, particularly MD simulation predict several force drops, there are no simulations that predict displacement jumps seen in LC mode experiments. The inability of simulation methods to adopt experimental parameters and the mismatch of the predicted numbers with experiments is main motivation for devising an alternate framework to simulations that can adopt experimental parameters and predict numbers that are comparable to experiments. The basic premise of our approach is that describing time evolution of the relevant variables should be adequate to capture most generic features of nano and micro-indentation phenomenon. In the particular case under study, this point of view is based on the following observation. While one knows that dislocations are the basic defects responsible for plastic deformation occurring inside the sample, the load-indentation depth curve does not include any information about the spatial location of dislocation activity inside the sample. In fact, the measured load and displacement are sample averaged response of the dislocation activity in the sample. This suggests that it should be adequate to use sample averaged dislocation densities to obtain load-indentation depth curve. Keeping this in mind, we devise a method for calculating the contribution from plastic deformation arising from dislocation activity in the entire sample. This is done by setting up rate equations for the relevant sample averaged dislocation densities. The first problem we consider is the force/load fluctuations in displacement controlled nano-indentation. We devise a novel approach that combines the power of nonlinear dynamics with the evolution equations for the mobile and forest dislocation densities. Since the force serrations result from plastic deformation occurring inside the sample, we devise a method for calculating this contribution by setting-up a system of coupled nonlinear time evolution equations for the mobile and forest dislocation densities. The approach follows closely the steps used in the Anantha krishna (AK) model for the Portevin-Le Chatelier (PLC) effect. The model includes nucleation, multiplication and propagation of dislocation loops in the time evolution equation for the mobile dislocation density. We also include other well known dislocation transformation mechanisms to forest dislocation. Several of these dislocation mechanisms are drawn from the AK model for the PLC effect. To illustrate the ability of the model to predict force fluctuations that match experiments, we use the work of Kiely at that employs a spherical indenter. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rate, the radius the indenter etc. The model predicts all the generic features of nano-indentation such as the Hertzian elastic branch followed by several force drops of decreasing magnitudes, and residual plas¬ticity after unloading. The stress corresponding to the elastic force maximum is close to the yield stress of an ideal solid. The predicted values for all the quantities are close to those reported by experiments. Our model allows us to address the indentation-size effect including the ambiguity in defining the hardness in the force drop dominated regime. At large indentation depths where the load drops disappear, the hardness shows decreasing trend, though marginal. The second problem we consider is the load controlled mode of indentation where sev¬eral displacement jumps of decreasing magnitudes are seen. Even though, the LC mode is routinely used in nano-indentation experiments, there are no models or simulations that predict the generic features of force-displacement curves, in particular, the existence of sev¬eral displacement jumps of decreasing magnitudes. The basic reason for this is the inability of these methods to impose constant load rate during displacement jumps. We then show that an extension of the model for the DC mode predicts all the generic features when the model is appropriately coupled to an equation defining the load rate. Following the model for DC mode, we retain the system of coupled nonlinear time evolution equations for mobile and forest dislocation densities that includes nucleation, multiplication, and propagation threshold mechanisms for mobile dislocations, and other dislocation transformation mechanisms. The commonly used Berkovich indenter is considered. The equations are then coupled to the force rate equation. We demonstrate that the model predicts all the generic features of the LC mode nano-indentation such as the existence of an initial elastic branch followed by several displacement jumps of decreasing magnitudes, and residual plasticity after unloading for a range of model parameter values. In this range, the predicted values of the load, displacement jumps etc., are similar to those found in experiments. Further, optimized set of parameter values can be easily determined that provide a good fit to the load-indentation depth curve of Gouldstone et al for single crystals of Aluminum. The stress corresponding to the maximum force on the Berkovich elastic branch is close to the theoretical yield stress. We also elucidate the ambiguity in defining hardness at nanometer scales where the displacement jumps dominate. The approach also provides insights into several open questions. The third problem we consider is the indentation size effect. The conventional definition of hardness is that it is the ratio of the load to the residual imprint area. The latter is determined by the residual plastic indentation depth through area-depth relation. Yet, the residual plastic indentation depth that is a measure of dislocation mobility, never enters into most hardness models. Rather, the conventional hardness models are based on the Taylor relation for the flow stress that characterizes the resistance to dislocation motion. This is a complimentary property to mobility. Our idea is to provide an alternate way of explaining the indentation size effect by devising a framework that directly calculates the residual plastic indentation depth by integrating the Orowan expression for the plastic strain rate. Following our general approach to plasticity problems, we set-up a system of coupled nonlinear time evolution equations for the mobile, forest (or the SSD) and GND densities. The model includes dislocation multiplication and other well known dislocation transformation mechanisms among the three types of dislocations. The main contributing factor for the evolution of the GND density is determined by the mean strain gradient and the number of sites in the contact area that can activate dislocation loops of a certain size. The equations are then coupled to the load rate equation. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rates, the geometrical quantities defining the Berkovich indenter including the nominal tip radius and other parameters. The hardness is obtained by calculating the residual plastic indentation depth after unloading by integrating the Orowan expression for the plastic strain rate. We demonstrate that the model predicts all features of the indentation size effect, namely, the increase in the hardness with decreasing indentation depth and the linear relation between the square of the hardness and inverse of the indentation depth, for all but 200nm, for a range of parameter values. The model also predicts deviation from the linear relation of H2 as a function of 1/z for smaller depths consistent with experiments. We also show that it is straightforward to obtain optimized parameter values that give a good fit to polycrystalline cold-worked copper and single crystals of silver. Our approach provides an alternate way of understanding the hardness and indentation size effect on the basis of the Orowan equation for plastic flow. This approach must be contrasted with most models of hardness that use the SSD and GND densities as parameters. The thesis is organized as follows. The first Chapter is devoted to background material that covers physical aspects of different kinds of plastic deformation relevant for the thesis. These include the conventional yield phenomenon and the intermittent plastic deformation in bulk materials in alloys exhibiting the Portevin-Le Chatelier (PLC) effect. We then provide background material on nano-and micro-indentation, both experimental aspects and the current status of the DC controlled and LC controlled modes of nano-indentation. Results of simulation methods are briefly summarized. The chapter also provides a survey of hardness models and the indentation size effect. A critical survey of experiments on dislocation microsructure that contradict / support certain predictions of the NixGao model. The current status of numerical simulations are also given. The second Chapter is devoted to introducing the basic steps in modeling plastic deformation using nonlinear dynamical approach. In particular, we describe how the time evolution equations are constructed based on known dislocation mechanisms such as nucleation, multiplication formations of junctions etc. We then consider a model for the continuous yield phenomenon that involves only the mobile and forest densities coupled to constant strain rate condition. This problem is considered in some detail to illustrate how the approach can be used for modeling nano-indentation and indentation size effect. The third Chapter deals with a model for displacement controlled nano-indentation. The fourth Chapter is devoted to adopting these equation to the load controlled mode of nano¬indentation. The fifth Chapter is devoted to modeling the indentation size effect based on calculating residual plastic indentation depth after unloading by using the Orowan’s expression for the plastic strain rate. We conclude the thesis with a Summary, Discussion and Conclusions.
17

Flexural Analysis and Design of Textile Reinforced Concrete

Soranakom, Chote, Mobasher, Barzin 03 June 2009 (has links)
A model is presented to use normalized multi-linear tension and compression material characteristics of strain-hardening textile reinforced concrete and derive closed form expressions for predicting moment-curvature capacity. A set of design equations are derived and simplified for use in spreadsheet based applications. The model is applicable for both strain-softening and strainhardening materials. The predictability of the simplified model is checked by model calibration and development of design charts for moment capacity and stress developed throughout the cross section of a flexural member. Model is calibrated by predicting the results of Alkali Resistant Glass and Polyethylene fabrics. A case for the flexural design of Glass Fiber Reinforced Concrete (GFRC) specimen as a simply supported beam subjected to distributed load is used to demonstrate the design procedure.
18

Stanovení zkrácených cyklických deformačních křivek superslitiny Inconel 738LC při zvýšených teplotách / Determination of Shortcut Cyclic Stress-strain Curves of Superalloy Inconel 738LC at Elevated Temperatures

Šmíd, Miroslav January 2008 (has links)
Multiple step tests under cyclic strain control have been performed using cylindrical specimens of cast polycrystalline Inconel 738LC superalloy at 23, 700, 500, 800 and 900 °C in laboratory atmosphere to obtain cyclic stress-strain curves. During cyclic straining of specimen were obtained cyclic hardening-softening curves. Their progress changed with temperature and strain amplitude. Evaluated cyclic stress-strain curves are shifted to lower stresses with increasing temperature. Surface relief was observed in fatigued specimens under SEM and metalography under optic microscopy. Slip markings were studied on specimen surface fatigued at 700 °C .Stress-strain response is compared and discussed in relation to the surface observations - persistent slip markings.
19

Tensile behaviour of steel-reinforced elements made of strain-hardening cement-based composites

Mündecke, Eric 01 October 2018 (has links)
Hochduktiler Beton ist ein mit kurzen Kunststofffasern bewehrter Hochleistungs-verbundwerkstoff auf Zementbasis, der unter Zugbelastung eine hohe nichtelastische Verformbarkeit und ein verfestigendes Materialverhalten aufweist. Dieses Verhalten wird durch die Zugabe von diskontinuierlich verteilten Kurzfasern aus Kunststoff erzielt. In der vorliegenden Arbeit wurden einachsige Bauteilzugversuche durchgeführt auf deren Basis das globale und lokale Zugtragverhalten der großformatigen Versuchskörper beschrieben werden kann. Ausgangspunkt sind experimentelle Untersuchungen zum Tragverhalten des Stabstahls und des hochduktilen Betons sowie zu deren gemeinsamen Verbundverhalten. Die Untersuchungen zeigen, dass der Herstellungsprozess das Betongefüge und damit auch das mechanische Verhalten von hochduktilem Beton beeinflusst und dieser auf Grund seiner Zusammensetzung ein ausgeprägtes Schwindverhalten aufweist. Beides muss bei der Untersuchung großformatiger Versuchskörper berücksichtigt werden. Dazu wurden sowohl unbewehrte als auch bewehrte Dehnkörper mit unterschiedlichem Bewehrungsgehalt unter kontrollierten Herstellungsbedingungen in einem konventionellen Mischwerk hergestellt. Die Ergebnisse der experimentellen Untersuchung erlauben die Abbildung des Last-Verformungsverhaltens unter Berücksichtigung der hohen Schwindmaße durch isoliert ermittelte Spannungs-Dehnungs-Beziehungen des hochduktilen Betons und des reinen Stahls. Dieses Verfahren erlaubt eine einfache Beschreibung des kombinierten Tragverhaltens unter Berücksichtigung der rissüberbrückenden Wirkung der Fasern. / SHCC is an advanced construction material developed especially for strain-hardening, quasi-ductile behaviour. Both are achieved through the combined interaction of short polymer fibres dispersed in the cementitious matrix. The resulting tensile behaviour of SHCC is characterized by a progressive formation of multiple cracks and high strain capacity, which influences the structural behaviour especially in combination with steel reinforcement. This thesis reports on experimental investigations to analyse the load-bearing behaviour of R/SHCC members. The investigations included the determination of relevant material properties as well as uniaxial tension tests on steel reinforced slab elements. The aim was to study the effect of multiple cracking on the bond interaction with steel reinforcement and their combined load-deformation behaviour. Specific attention was also given to the influence of the production process and shrinkage behaviour of SHCC. It was shown that production and size related changes of material properties influence the cracking behaviour of SHCC, which can lead to a significant reduction of tensile strain capacity in a structural element. The interaction with steel reinforcement, on the other hand, was found to facilitate multiple cracking and enhance tensile strain capacity during the stage of elastic steel deformations. However, a mutual dependency of SHCC fracture and plastic steel deformations could be observed in the post-yielding stage of the steel rebar. The experimental results were discussed with respect to their implications for constitutive modelling of the tensile load-bearing behaviour. The resulting relationships are based upon the individual material behaviour as well as their bond interaction. Further to that, the effects of SHCC shrinkage and early strain-hardening of steel reinforcement were assessed based on the experimental data. These results contribute to the understanding of the mechanical processes in order to determine the behaviour of steel reinforced SHCC for practical applications.
20

Mechanisms of the interaction between continuous and short fibres in textile-reinforced concrete (TRC) / Mechanismen der Wechselwirkungen zwischen Endlos- und Kurzfasern in textilbewehrtem Beton

Barhum, Rabea 12 September 2014 (has links) (PDF)
This thesis reports on experimental investigations of the mechanisms inherent in the joint action of short and continuous fibres in high-performance, cement-based composites. Experiments on different levels of observation (macro- meso- and micro-levels) were performed to provide detailed insights into the various effects of adding different types of short fibres (dispersed AR glass, integral AR glass and dispersed carbon fibres) on the strength, deformation, and failure behaviour of textile-reinforced concrete (TRC) subjected to tensile loading. Moreover, visual inspections of the specimens' surfaces and microscopic investigation of the fracture surfaces and the interface zone between fibre and matrix were performed and evaluated. Subsequently, the mathematical descriptions for TRC with short fibres under deformation controlled tensile loading conditions were derived based on a multi-scale rheological-statistical modelling approach. Based on a literature review, the state of the art is presented and discussed to identify key questions that are yet to be answered satisfactorily. This provides the starting point for the investigations presented in this thesis. The experimental program on the macro-level included uniaxial tension tests performed on thin, narrow plates reinforced by: a) only textile reinforcement, b) only short fibres, and c) hybrid reinforcement (both textile reinforcement with the addition of short fibres). Special attention was directed toward the course of the stress-strain relationship, crack pattern development, and fibre failure behaviour. The stress-strain curves resulting from uniaxial tension testing demonstrated clearly the positive influence of all types of short fibre on the mechanical performance of TRC. While the first-crack stress in TRC specimens increased significantly due to the addition of short fibres, an expansion of the strain region, where multiple cracks form, was observed for the stress-strain curves for TRC with added short fibres. The visual inspection of the specimens\' surfaces showed a higher number of cracks and finer crack patterns for given strain levels in the cases when short fibres were added to TRC. Moreover, depending on fibre type, the positive effects of the addition of short fibres on both tensile strength and work-to-fracture of the composite were found to vary significantly. The findings at the micro- and meso-levels of observation provided to a great extent a core of understanding of some particular mechanical behavioural properties of TRC with short fibres at the macro-level of observation. Thus, in addition to the experimental testing performed on composite materials with different parameter combinations, investigations of the action of individual material components, i.e., multifilament-yarns and single short fibres, embedded into cement-based matrices were carried out. It was found that short fibres indeed improve the bond between multifilament-yarns and the surrounding matrix. By their random positioning on the yarn\'s surface, short fibres built new adhesive cross-links which provided extra connecting points to the surrounding matrix. Furthermore, the water-to-binder ratio of the matrix influenced bond quality between fibre and matrix, i.e., various degrees of matrix-fibre bond were observed. As a result, the mechanical behaviour of the composite varied with w/b: While the good bond of the fibre embedded in a matrix with a low water-to-binder ratio leads to increase in stiffness and strength of the composite, fibres with weak bonding can be considered as defects with respect to stiffness as they lead to a decrease in the value. The thesis further derives the mathematical relationships for TRC with the addition of short fibres under deformation-controlled tensile loading. A physically based rheological model consisting of simple rheological elements was developed based on the experimental results on the micro-scale, using single-fibre pullout tests. Special attention was paid to the gradual de-bonding process and the resulting force-displacement branch. The model adequately reproduced both relevant fibre failure scenarios: fibre fracture and fibre pullout. By means of statistical procedures the combination of these models led to description of the stress-crack opening behaviour of an individual crack bridged by the given number of short fibres. The stress-strain relation for TRC with short fibres subjected to tensile loading was then derived. The concept followed at the macro-level of observation was modelling separately the three main regions of the characteristic stress-strain curve. The regions of crack-free material and crack-widening were considered linear and described based on the corresponding characteristic values of each region. The behaviour of the multiple cracking region was derived by considering an increasing number of cracks in serial interconnection and the contribution of the uncracked matrix in between. The stress transfer, i.e., bridging stress, across the crack was determined based on the contribution of both short fibres and multifilament-yarns. Behaviour of individual cracks was adjusted by varying the number of bridging fibres in different cracks and by varying the yarn bridging stress according to range observed in the pullout experiments. / In der vorliegenden Arbeit wird über Untersuchungen zu den Mechanismen der Wechselwirkungen zwischen Kurz- und Endlosfasern in zement-basierenten Hochleistungskompositen berichtet. Hierzu wurden experimentelle Untersuchungen auf verschiedenen Betrachtungsebenen (Makro-, Meso- und Mikroebene) durchgeführt mit dem Ziel, detaillierte Erkenntnisse zu den Auswirkungen der Zugabe von verschiedenen Arten von Kurzfasern (disperse und integrale AR-Glasfasern, Kohlenstofffasern) hinsichtlich des Festigkeits-, Verformungs- und Bruchverhaltens von Textilbeton (engl.: textile-reinforced concrete = TRC) unter Zugbeanspruchung zu gewinnen. Die Bruchflächen sowie die Gestalt der Interphase zwischen der Bewehrung aus Textilien oder Kurzfasern und der umhüllenden zemengebundenen Matrix wurden mit optischen und elektronenmikroskopischen Verfahren hinsichtlich der Wechselwirkungsphänomene ausgewertet. Die Ergebnisse der experimentellen Arbeiten bildeten den Ausgangspunkt für die mathematischen Beschreibungen für TRC mit Kurzfasern unter verformungsgesteuerter Zugbelastung. Die Formulierungen erfolgten auf Grundlage multiskalarer rheologisch-statistischer Modellansätze. In einer Literatursichtung wurde zunächst der Kenntnisstand zu den Materialien und zum Verhalten von TRC und Faserbeton unter Zugbeanspruchung dargestellt und diskutiert. Die noch zu erforschenden Fragen wurden präzisiert und die Grundlagen für deren Untersuchung geschaffen. Bei den Experimenten auf der Makroebene wurden drei Bewehrungsvarianten betrachtet: a) textile Bewehrung, b) Kurzfaserbewehrung, und c) hybride Bewehrung (Textil und Kurzfasern). An Dehnkörpern wurde die Spannungs-Dehnungsbeziehung unter einachsiger Zugbelastung studiert und dabei das Rissbild und die Phänomene des Faserversagens detailliert beobachtet. Anhand der Spannungs-Dehnungsbeziehungen konnte gezeigt werden, dass die Zugabe von Kurzfasern bei allen untersuchten Kurzfaserarten zu einer erheblichen Verbesserung der Leistungsfähigkeit von Textilbeton führt. Dies zeigte sich unter anderem in einer ausgeprägten Anhebung der Erstrissspannung sowie der Entwicklung von zahlreicheren und damit feineren Rissen, die zu einer Verbesserung der Duktilität führten. Ebenso wurden Steigerungen der Zugfestigkeit und der Energiedissipation festgestellt. In welchem Maß diese Änderungen stattfinden, hängt von der Art der Kurzfasern ab. Die Experimente auf der Mikro- und Mesoebene wurden so konzipiert, dass sie die Erkundung der Mechanismen, die den auf der Makroebene beobachteten Phänomenen zugrunde liegen, unterstützten. Auf der Mesoebene wurden Mulitifilamentgarnauszugversuche (mit und ohne Kurzfasern in der Matrix) und auf der Mikroebene Einzelfaserauszugsversuche für alle betrachteten Kurzfasertypen durchgeführt. Es wurde festgestellt, dass die Kurzfasern den Verbund zwischen Matrix und Multifilamentgarn verbessern. Kurzfasern können bei zufälliger Positionierung an der Garnoberfläche zusätzliche Haftbrücken bzw. Verbindungsstellen zu umgebender Matrix bilden. Für die Verbundqualität zwischen Faser und Matrix ist der Wasser-Bindemittel-Wert (W/B-Wert) von entscheidender Bedeutung. Bei einer Matrix mit niedrigem W/B-Wert führt die gute Qualität des Verbunds der eingebetteten Fasern zu einer Erhöhung der Steifigkeit sowie der Festigkeit des Komposites. Bei hohem W/B-Wert haben die Fasern einen schlechten Verbund zur Matrix und müssen überwiegend als Fehl- bzw. Schwachstellen betrachtet werden. Festigkeit und Steifigkeit des Komposits nehmen daher ab. Die Ableitung mathematischer Beziehungen für Textilbeton mit Zugabe von Kurzfasern unter verformungsgesteuerter Zugbelastung erfolgte aufbauend auf den Ergebnissen der experimentellen Untersuchungen auf der Mikroebene. Die Einzelfaserauszugsversuche wurden mit Hilfe eines physikalisch basierten Modelles nachgebildet, das aus einfachen rheologischen Elementen besteht. Phänomene wie die graduelle Ablösung der Faser, Faserbruch und Faserauszug wurden durch eine entsprechende Kombination und Parametrierung der rheologischen Elemente abgebildet. Im Ergebnis wurden zutreffende Kraft-Rissöffnungsbeziehungen modelliert. Auf der Mesoebene wurde ein einzelner Riss modelliert, der sowohl durch Multifilamentgarne als auch Kurzfasern überbrückt werden kann. Der rissüberbrückenden Wirkung der zahlreichen Kurzfasern wurde mit Hilfe statistischer Methoden rechnung getragen, die unterschiedliche Faser-Risswinkel und Einbindelängen berücksichtigen. Die resultierende Spannungs-Rissöffnungskurve umfasst die rissüberbrückende Wirkung von Multifilamentgarnen und Kurzfasern. Auf der Makroebene kann die charakteristische Spannungs-Dehnungsbeziehung von TRC unter Zugbelastung in 3 Bereiche (Zustände I, IIa, IIb) unterteilt werden. Die Kurvenverläufe im Zustand I (ungerissenen) sowie Zustand IIb (abgeschlossenes Rissbild) wurden als linear betrachtet und basierend auf den entsprechenden charakteristischen Werten des jeweiligen Zustands beschrieben. Das Verhalten im Zustand IIa (multiple Rissbildung) wurde durch die Reihenschaltung einer zunehmenden Anzahl von Rissen sowie den Beitrags der ungerissenen Matrix zwischen den Rissen modelliert.

Page generated in 0.0707 seconds