• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • Tagged with
  • 21
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effect of levodopa on cortico-striatal and cortico-cerebellar circuits in Parkinson's disease

Martinu, Kristina 09 1900 (has links)
La maladie de Parkinson (MP) est la deuxième maladie neurodégénérative la plus commune. Les symptômes principalement observés chez les patients atteints de la MP sont la rigidité, les tremblements, la bradykinésie et une instabilité posturale. Leur sévérité est souvent asymétrique. La cause principale de ces symptômes moteurs est la dégénérescence du circuit dopaminergique nigro-striatal qui mène à un débalancement d’activité du circuit cortico-striatal. Ce débalancement de circuits est le point essentiel de cette thèse. Dans les protocoles de recherche décrits ici, des patients atteints de la MP (avant et après une dose de levodopa) et des participants contrôles sains ont effectué des mouvements auto-initiés ou en réponse à des stimulis externes pendant que l’on mesurait leur activité cérébrale en imagerie par résonance magnétique fonctionnelle (IRMf). Dans cette thèse, nous abordons et mettons en évidence quatre (4) points principaux. En première partie (chapitre 2), nous présentons un recensement de la littérature sur les cicruits cortico-striataux et cortico-cérébelleux dans la MP. En utilisant des méthodes de neuroimagerie, des changements d’activité cérébrale et cérébelleuse ont été observés chez les patients atteints de la MP comparés aux participants sains. Même si les augmentations d’activité du cervelet ont souvent été attribuées à des mécanismes compensatoires, nos résultats suggèrent qu’elles sont plus probablement liées aux changements pathophysiologiques de la MP et à la perturbation du circuit cortico-cérébelleux. En général, nous suggérons (1) que le circuit cortico-cérébelleux est perturbé chez les patients atteints de la MP, et que les changements d’activité du cervelet sont liés à la pathophysiologie de la MP plutôt qu’à des mécanismes compensatoires. En deuxième partie (chapitre 3), nous discutons des effets de la levodopa sur les hausses et baisses d’activité observés chez les patients atteints de la MP, ainsi que sur l’activité du putamen pendant les mouvements d’origine interne et externe. De nombreuses études en neuroimagerie ont montré une baisse d’activité (hypo-activité) préfrontale liée à la déplétion de dopamine. En revanche, l’utilisation de tâches cognitives a montré des augmentations d’activité (hyper-activité) corticale chez les patients atteints de la MP comparés aux participants sains. Nous avons suggéré précédemment que ces hypo- et hyper-activités des régions préfrontales dépendent de l’implication du striatum. Dans cette thèse nous suggérons de plus (2) que la levodopa ne rétablit pas ces hyper-activations, mais plutôt qu’elles sont liées à la perturbation du circuit méso-cortical, et aussi possiblement associées à l’administration de médication dopaminergique à long terme. Nous montrons aussi (3) que la levodopa a un effet non-spécifique à la tâche sur l’activité du circuit cortico-striatal moteur, et qu’elle n’a pas d’effet sur l’activité du circuit cortico-striatal cognitif. Nous montrons enfin (chapitre 4) que la levodopa a un effet asymétrique sur les mouvements de la main droite et gauche. À peu près 50% des patients atteints de la MP démontrent une asymétrie des symptômes moteurs, et ceci persiste à travers la durée de la maladie. Nos résultats suggèrent (4) que la levodopa pourrait avoir un plus grand effet sur les patrons d’activations des mouvements de la main la plus affectée. / Parkinson’s disease (PD) is the second most common neurodegenerative disease, mainly manifested by tremor, rigidity, bradykinesia and postural instability, and often an asymmetry of symptom severity of the left and right sides of the body. The depletion of dopamine of the nigrostriatal pathway is the primary cause of the motor symptoms observed in patients with PD, leading to an imbalance in basal-ganglia prefrontal circuits. In the protocols described here, patients with PD before and after levodopa administration and healthy participants performed self-initiated (SI) and externally triggered (ET) movements with the left and right hand during functional magnetic resonance imaging (fMRI). In the chapters of this thesis, we argue and provide evidence for four main points. The first portion (chapter 2) provides a literature review on cortico-striatal and cortico-cerebellar circuit disruption in PD. Using neuroimaging techniques, changes in cerebral and cerebellar activity have been observed in patients with PD compared with healthy participants. Although increases in activity in the cerebellum have often been interpreted as compensatory mechanisms, we provide evidence that they are more likely to be related to pathophysiological changes of the disease, and the disruption of the cortico- cerebellar circuit. In general, we argue (1) is that activity in the cerebellum is linked to the pathophysiology of PD. In the second section (chapter 3) we discuss the effect of levodopa on the patterns of cortical hypo- and hyper-activity in PD, as well as the activity of the putamen in SI and ET movements. Many studies have shown cortical hypo-activity in relation to nigrostriatal dopamine depletion. In contrast, some cognitive studies have also identified increases in cortical activity in patients with PD as compared with healthy control participants. We have previously suggested that cortical hypo- and hyper-activations depend on striatal recruitment. In this thesis, we further show that hyper-activations in the prefrontal cortex are not reestablished with levodopa administration. We suggest (2) that they are rather associated with mesocortical dopamine circuit dysfunction, and perhaps linked with long- term dopaminergic medication administration. Furthermore, we show (3) that levodopa has a non-task specific effect on the motor cortico-striatal loop, but does not affect the cognitive cortico-striatal circuit. Finally (chapter 4), we show that the effect of levodopa on movements of the left and right hands is not symmetrical. Previous studies have shown that in about 50% of patients, one side of the body is more severely affected, and this asymmetry persists throughout the duration of the disease. Our results suggest (4) that levodopa may have stronger effects on the cerebral hemodynamic patterns related to the movements of the more affected hand than on those of the less affected hand.
12

Effect of levodopa on cortico-striatal and cortico-cerebellar circuits in Parkinson's disease

Martinu, Kristina 09 1900 (has links)
La maladie de Parkinson (MP) est la deuxième maladie neurodégénérative la plus commune. Les symptômes principalement observés chez les patients atteints de la MP sont la rigidité, les tremblements, la bradykinésie et une instabilité posturale. Leur sévérité est souvent asymétrique. La cause principale de ces symptômes moteurs est la dégénérescence du circuit dopaminergique nigro-striatal qui mène à un débalancement d’activité du circuit cortico-striatal. Ce débalancement de circuits est le point essentiel de cette thèse. Dans les protocoles de recherche décrits ici, des patients atteints de la MP (avant et après une dose de levodopa) et des participants contrôles sains ont effectué des mouvements auto-initiés ou en réponse à des stimulis externes pendant que l’on mesurait leur activité cérébrale en imagerie par résonance magnétique fonctionnelle (IRMf). Dans cette thèse, nous abordons et mettons en évidence quatre (4) points principaux. En première partie (chapitre 2), nous présentons un recensement de la littérature sur les cicruits cortico-striataux et cortico-cérébelleux dans la MP. En utilisant des méthodes de neuroimagerie, des changements d’activité cérébrale et cérébelleuse ont été observés chez les patients atteints de la MP comparés aux participants sains. Même si les augmentations d’activité du cervelet ont souvent été attribuées à des mécanismes compensatoires, nos résultats suggèrent qu’elles sont plus probablement liées aux changements pathophysiologiques de la MP et à la perturbation du circuit cortico-cérébelleux. En général, nous suggérons (1) que le circuit cortico-cérébelleux est perturbé chez les patients atteints de la MP, et que les changements d’activité du cervelet sont liés à la pathophysiologie de la MP plutôt qu’à des mécanismes compensatoires. En deuxième partie (chapitre 3), nous discutons des effets de la levodopa sur les hausses et baisses d’activité observés chez les patients atteints de la MP, ainsi que sur l’activité du putamen pendant les mouvements d’origine interne et externe. De nombreuses études en neuroimagerie ont montré une baisse d’activité (hypo-activité) préfrontale liée à la déplétion de dopamine. En revanche, l’utilisation de tâches cognitives a montré des augmentations d’activité (hyper-activité) corticale chez les patients atteints de la MP comparés aux participants sains. Nous avons suggéré précédemment que ces hypo- et hyper-activités des régions préfrontales dépendent de l’implication du striatum. Dans cette thèse nous suggérons de plus (2) que la levodopa ne rétablit pas ces hyper-activations, mais plutôt qu’elles sont liées à la perturbation du circuit méso-cortical, et aussi possiblement associées à l’administration de médication dopaminergique à long terme. Nous montrons aussi (3) que la levodopa a un effet non-spécifique à la tâche sur l’activité du circuit cortico-striatal moteur, et qu’elle n’a pas d’effet sur l’activité du circuit cortico-striatal cognitif. Nous montrons enfin (chapitre 4) que la levodopa a un effet asymétrique sur les mouvements de la main droite et gauche. À peu près 50% des patients atteints de la MP démontrent une asymétrie des symptômes moteurs, et ceci persiste à travers la durée de la maladie. Nos résultats suggèrent (4) que la levodopa pourrait avoir un plus grand effet sur les patrons d’activations des mouvements de la main la plus affectée. / Parkinson’s disease (PD) is the second most common neurodegenerative disease, mainly manifested by tremor, rigidity, bradykinesia and postural instability, and often an asymmetry of symptom severity of the left and right sides of the body. The depletion of dopamine of the nigrostriatal pathway is the primary cause of the motor symptoms observed in patients with PD, leading to an imbalance in basal-ganglia prefrontal circuits. In the protocols described here, patients with PD before and after levodopa administration and healthy participants performed self-initiated (SI) and externally triggered (ET) movements with the left and right hand during functional magnetic resonance imaging (fMRI). In the chapters of this thesis, we argue and provide evidence for four main points. The first portion (chapter 2) provides a literature review on cortico-striatal and cortico-cerebellar circuit disruption in PD. Using neuroimaging techniques, changes in cerebral and cerebellar activity have been observed in patients with PD compared with healthy participants. Although increases in activity in the cerebellum have often been interpreted as compensatory mechanisms, we provide evidence that they are more likely to be related to pathophysiological changes of the disease, and the disruption of the cortico- cerebellar circuit. In general, we argue (1) is that activity in the cerebellum is linked to the pathophysiology of PD. In the second section (chapter 3) we discuss the effect of levodopa on the patterns of cortical hypo- and hyper-activity in PD, as well as the activity of the putamen in SI and ET movements. Many studies have shown cortical hypo-activity in relation to nigrostriatal dopamine depletion. In contrast, some cognitive studies have also identified increases in cortical activity in patients with PD as compared with healthy control participants. We have previously suggested that cortical hypo- and hyper-activations depend on striatal recruitment. In this thesis, we further show that hyper-activations in the prefrontal cortex are not reestablished with levodopa administration. We suggest (2) that they are rather associated with mesocortical dopamine circuit dysfunction, and perhaps linked with long- term dopaminergic medication administration. Furthermore, we show (3) that levodopa has a non-task specific effect on the motor cortico-striatal loop, but does not affect the cognitive cortico-striatal circuit. Finally (chapter 4), we show that the effect of levodopa on movements of the left and right hands is not symmetrical. Previous studies have shown that in about 50% of patients, one side of the body is more severely affected, and this asymmetry persists throughout the duration of the disease. Our results suggest (4) that levodopa may have stronger effects on the cerebral hemodynamic patterns related to the movements of the more affected hand than on those of the less affected hand.
13

Regulation of the protein synthesis machinery in the striatum / Régulation de la machinerie de synthèse protéique dans le striatum

Biever, Anne 15 June 2016 (has links)
Le striatum dorsal et le noyau accumbens (NAc) jouent un rôle crucial dans la sélection et l’exécution de mouvements résultant de l’intégration de signaux dopaminergiques et d’informations glutamatergiques sensorielles. A ce jour, les mécanismes moléculaires à travers lesquels la dopamine (DA) régule la plasticité des neurones épineux moyens du striatum (MSNs) sont peu connus. La synthèse des protéines est un événement essentiel requis pour la plasticité synaptique et la mémoire à long terme. Dans de nombreuses régions cérébrales, l’initiation, étant l'étape limitante de la synthèse protéique, est contrôlée par la phosphorylation de facteurs d’initiation de la traduction (eIFs). Notre hypothèse est que la DA pourrait réguler la traduction d’ARNm dans le striatum à travers des mécanismes moléculaires similaires. La première partie de cette thèse visait à étudier le rôle de la DA dans la régulation de la machinerie de traduction dans les MSNs. Pour ce faire, nous avons analysé au niveau du striatum, la phosphorylation de différents eIFs en réponse à l’administration aigue ou répétée de d-amphetamine (d-amph), entraînant une augmentation transitoire ou de longue durée de la transmission dopaminergique, respectivement. Bien que l’administration de la d-amph est associée à une légère augmentation de pS209-eIF4E, l’état de phosphorylation de S1108-eIF4G reste inchangé. En revanche, une forte augmentation de p51-eIF2α a été observée après administration répétée d-amph. Nous démontrons que la phosphorylation de 51-eIF2α est corrélée à une diminution transitoire de la synthèse protéique globale dans le striatum. En outre, la d-amph induit également une importante augmentation de la phosphorylation de la protéine ribosomale S6 (rpS6). Cet effet se produit spécifiquement dans MSNs exprimant le récepteur D1 à la DA et implique la cascade de signalisation AMPc/PKA/DARPP-32, tout en étant indépendant des voies mTORC1/S6K et ERK. La phosphorylation de rpS6 est couramment utilisée pour marquer de l'activité neuronale bien que son rôle biologique dans le cerveau reste énigmatique. Compte tenu sa régulation significative par la DA, la deuxième partie de cette thèse a eu pour but d’acquérir de nouvelles connaissances sur la fonction de la phosphorylation de rpS6 en utilisant un modèle de souris rpS6 déficient de ses sites de phosphorylations, rpS6P-/-. Dans ces souris transgéniques la synthèse protéique globale est normale dans diverses régions du cerveau. Néanmoins, les souris rpS6P -/- présentent une altération de la traduction d'un sous-ensemble de ARNm, ceci sélectivement dans le NAc, suggérant le rôle potentiel de la phosphorylation de rpS6 dans la régulation de la traduction de transcrits bien spécifiques au sein de cette sous-région du striatum. Dans l'ensemble, les résultats présentés dans cette thèse permettent une meilleure compréhension des mécanismes engagés par DA pour contrôler la traduction d’ ARNm dans les MSNs du striatum. / The dorsal striatum and the nucleus accumbens (NAc) process dopamine (DA) signals in order to generate appropriate behavior in response to given glutamatergic sensory cues. The molecular mechanisms through which DA promotes long-lasting changes in striatal GABAergic medium-sized spiny neurons (MSNs) are still not fully understood. It is widely accepted that protein synthesis is an essential event required for several forms of synaptic plasticity and long-term memory. In various brain areas, initiation is the rate-limiting step of translation and is regulated through phosphorylation of translation initiation factors (eIFs). Whether DA could regulate mRNA translation in the striatum through similar mechanisms is yet poorly investigated. A first part of this thesis aimed to shed light on the role of DA in the regulation of the translational machinery in MSNs. Here, we measured the phosphorylation state of eIFs following single and repeated in vivo d-amphetamine (d-amph) administration, resulting in a transient or long-lasting increase of the dopaminergic transmission, respectively. Although d-amph exposure slightly enhances the striatal pS209-eIF4E, pS1108-eIF4G remains unchanged. In contrast, a strong increase in p51-eIF2α is observed after repeated d-amph administration. We demonstrate that d-amph-induced p51-eIF2α is associated to a transient decrease in generall striatal protein synthesis. In addition, d-amph markedly increases the striatal phosphorylation of the 40S ribosomal protein S6 (rpS6). This effect occurs selectively in D1 DA receptor (D1R)-expressing MSNs and requires the cAMP/PKA/DARPP-32 cascade but is independent of mTORC1/S6K and ERK signaling. rpS6 phosphorylation is commonly used as a marker for neuronal activity even though its biological role in the brain remains puzzling. Given the significant regulation of striatal rpS6 phosphorylation by DA, the second part of this thesis sought to gain new insights into the function of this post-translational event by using a phosphodeficient rpS6P-/- mouse model. We showed that rpS6P-/- mice display unaltered global protein synthesis in different brain regions. Nonetheless, rpS6P-/- mice exhibit impaired translation of a subset of mRNA selectively in the NAc, pointing to the potential role of rpS6 phosphorylation in the regulation of transcript-specific translation within this striatal sub-region. Overall, the results presented in this thesis provide a better understanding of the mechanisms engaged by DA to control mRNA translation in striatal MSNs.
14

Modeling receptor induced signaling in MSNs : Interaction between molecules involved in striatal synaptic plasticity

Nair, Anu G. January 2014 (has links)
Basal Ganglia are evolutionarily conserved brain nuclei involved in several physiologically important animal behaviors like motor control and reward learning. Striatum, which is the input nuclei of basal ganglia, integrates inputs from several neurons, like cortical and thalamic glutamatergic input and local GABAergic inputs. Several neuromodulators, such as dopamine, accetylcholine and serotonin modulate the functional properties of striatal neurons. Aberrations in the intracellular signaling of these neurons lead to several debilitating neurodegenerative diseases, like Parkinson’s disease. In order to understand these aberrations we should first identify the role of different molecular players in the normal physiology. The long term goal of this research is to understand the molecular mechanisms responsible for the integration of different neuromodulatory signals by striatal medium spiny neurons (MSN). This signal integration is known to play important role in learning. This is manifested via changes in the synaptic weights between different neurons. The group of synpases taken into consideration for the current work is the corticostriatal one, which are synapses between the cortical projection neurons and MSNs. One of the molecular processes of considerable interest is the interaction between dopaminergic and cholinergic inputs. In this thesis I have investigated the interactions between the biochemical cascades triggered by dopaminergic, cholinergic (ACh) and glutamatergic inputs to the striatal MSN. The dopamine induced signaling increases the levels of cAMP in the striatonigral MSNs. The sources of dopamine and acetylcholine are dopaminergic neurons (DAN) from midbrain and tonically active cholinergic interneurons (TAN) of striatum, respectively. A sub-second burst activity in DAN along with a simultaneous pause in TAN is a characteristic effect elicited by a salient stimulus. This, in turn, leads to a dopamine peak and, possibly, an acetylcholine (ACh) dip in striatum. I have looked into the possibility of sensing this ACh dip and the dopamine peak at striatonigral MSNs. These neurons express D1 dopamine receptor (D1R) coupled to Golf and M4 Muscarinic receptor (M4R) coupled to Gi/o . These receptors are expressed significantly in the dendritic spines of these neurons where the Adenylate Cyclase 5 (AC5) is a point of convergence for these two signals. Golf stimulates the production of cAMP by AC5 whereas Gi/o inhibits the Golf mediated cAMP production. I have performed a kinetic-modeling exercise to explore how dopamine and ACh interacts with each other via these receptors and what are the effects on the downstream signaling events. The results of model simulation suggest that the striatonigral MSNs are able to sense the ACh dip via M4R. They integrate the dip with the dopamine peak to activate AC5 synergistically. We also found that the ACh tone may act as a potential noise filter against noisy dopamine signals. The parameters for the G-protein GTPase activity indicate towards an important role of GTPase Activating Proteins (GAPs), like RGS, in this process. Besides this we also hypothesize that M4R may have therapeutic potential. / <p>QC 20140325</p>
15

Structural and functional brain plasticity for statistical learning

Karlaftis, Vasileios Misak January 2018 (has links)
Extracting structure from initially incomprehensible streams of events is fundamental to a range of human abilities: from navigating in a new environment to learning a language. These skills rely on our ability to extract spatial and temporal regularities, often with minimal explicit feedback, that is known as statistical learning. Despite the importance of statistical learning for making perceptual decisions, we know surprisingly little about the brain circuits and how they change when learning temporal regularities. In my thesis, I combine behavioural measurements, Diffusion Tensor Imaging (DTI) and resting-state fMRI (rs-fMRI) to investigate the structural and functional circuits that are involved in statistical learning of temporal structures. In particular, I compare structural connectivity as measured by DTI and functional connectivity as measured by rs-fMRI before vs. after training to investigate learning-dependent changes in human brain pathways. Further, I combine the two imaging modalities using graph theory and regression analyses to identify key predictors of individual learning performance. Using a prediction task in the context of sequence learning without explicit feedback, I demonstrate that individuals adapt to the environment’s statistics as they change over time from simple repetition to probabilistic combinations. Importantly, I show that learning of temporal structures relates to decision strategy that varies among individuals between two prototypical distributions: matching the exact sequence statistics or selecting the most probable outcome in a given context (i.e. maximising). Further, combining DTI and rs-fMRI, I show that learning-dependent plasticity in dissociable cortico-striatal circuits relates to decision strategy. In particular, matching relates to connectivity between visual cortex, hippocampus and caudate, while maximisation relates to connectivity between frontal and motor cortices and striatum. These findings have potential translational applications, as alternate brain routes may be re-trained to support learning ability when specific pathways (e.g. memory-related circuits) are compromised by age or disease.
16

Rôle des ganglions de la base dans l'apprentissage associatif conditionnel : une approche multidisciplinaire

Hadj-Bouziane, Fadila 17 December 2003 (has links) (PDF)
Avec l'expérience, nous acquérons une panoplie de règles, associations arbitraires entre des stimuli externes et des actes moteurs, qui nous permettent d'adapter notre comportement à l'environnement (apprentissage associatif conditionnel). Ce type d'apprentissage met en jeu les boucles reliant les ganglions de la base (GGB) et le cortex frontal. Ce travail visait à préciser le rôle des GGB dans l'apprentissage de règles visuo-motrices conditionnelles en utilisant plusieurs approches : 1) l'enregistrement de l'activité des neurones du striatum chez le singe éveillé, 2) l'étude chez des patients atteints de la maladie de Parkinson (une pathologie neurodégénérative touchant les GGB) et 3) la neuroimagerie fonctionnelle chez l'homme sain. Les résultats des trois expériences convergent pour indiquer que les GGB sont impliqués à la fois dans l'acquisition et la rétention des associations visuo-motrices.
17

Specification of Dorsal and Intermediate Telencephalic Character

Marklund, Matthew January 2005 (has links)
The telencephalon is the most highly evolved region of the vertebrate central nervous system (CNS). The major structures of the telencephalon - the cortex and basal ganglia – derive from the dorsally positioned pallium and the ventrally positioned subpallium, respectively. Differences in morphology, gene expression, and connectivity permit a subdivision of the developing telencephalon into domains that give rise to discrete regions of the adult brain. In mammals, the ventral region of the developing telencephalon can be subdivided into the medial (MGE) and lateral (LGE) ganglionic eminences. The dorsal midline cells give rise to the choroid plexus, and cells in the more lateral domain, the dorsal pallium, give rise to the cerebral cortex. Genetic studies have provided evidence that crossregulatory interactions between transcription factors contribute to the regionalization of the telencephalon. Less is known, however, about the secreted signals that induce the initial dorsoventral character of telencephalic cells. Sonic hedgehog (SHH) is required for the specification of ventral character along the entire anteroposterior (AP) extent of the developing CNS, including the telencephalon. We show that WNT activity imposes an early generic dorsal telencephalic character and that Fibroblast Growth Factor (FGF) act sequentially, and in concert with WNT, to specify cells of definitive dorsal telencephalic character. We also show that retinoic acid (RA)-mediated signaling induces intermediate character in telencephalic cells, and that FGFs maintain cells of ventral character by opposing RA activity. The following model emerges from these findings. At gastrula stages, most or all prospective telencephalic cells become specified as ventral cells in response to node-derived SHH signals. At neural fold- and early neural plate stages, cells in the prospective dorsal and intermediate regions of the telencephalon cells are exposed to WNT signaling that induce a generic dorsal character. The head ectoderm adjacent to the telencephalon then starts to express the retinoic acid producing enzyme, Raldh3, thus exposing telencephalic cells to RA signals. At the same time prospective dorsal cells start to express WNT signals. RA signaling appears to promote the generation of intermediate/prestriatal cells, whereas WNT signal suppress the actions of RA on dorsal cells, which therefore maintain their dorsal character. From the neural plate stage, prospective ventral 6 telencephalic cells are exposed to FGF8 derived from the anterior neural ridge, and FGF8 maintains ventral telencephalic character by opposing the influence of RA signals in ventral cells. At early neural tube stages, the domain of Fgf8 expression expands dorsally and FGF signals derived from the dorsal midline region induce definitive dorsal/precortical cells. In the intermediate region of the telencephalon cells evade high levels of WNT and FGF signals, resulting in an environment in which RA signaling is able to induce prestriatal character.
18

Le rôle de la voie amygdalo-nigro-striée dans les processus attentionnels dans les apprentissages instrumentaux, classiques et temporels / Role of the amygdalo-nigro-striatal pathway in attentional processes in operant, pavlovian and temporal learning

Es-Seddiqi, Mouna 07 April 2017 (has links)
L’apprentissage associatif est un mécanisme d’une grande complexité, faisant appel à plusieurs processus à la fois. Le processus attentionnel est un des premiers à être mobilisé lors d’une association, il serait même impliqué pour extraire les paramètres temporels associés à un stimulus inconditionnel biologiquement signifiant avant même toute association effective (Balsam, Drew, and Yang, 2002). Certains travaux ont montré l’implication de certaines structures neurobiologiques à travers lesquelles les effets du processus attentionnel pourraient se mettre en place. Pour l’équipe de Holland PC, par exemple, les réponses d’orientation vers un stimulus conditionné (attention top-down)(Lee et al., 2005), impliquent le noyau central de l’amygdale ainsi que les projections dopaminergiques nigro-striées tandis qu’une présentation d’un nouveau stimulus de façon imprévue lors d’une association (attention bottom-up) mobilisera plutôt la substancia inominata qui serait modulé par le noyau central de l’amygdale (CeA) et le cortex pariétal (Holland and Gallagher, 2006). Parallèlement, le processus attentionnel dans une discrimination temporelle, dans lequel l’apprentissage associatif nécessite, outre des stimuli sensoriels discrets, des performances liées au jugement des durées. Dans ce dernier cas, le mécanisme du processus attentionnel mobilise d’autres modèles conceptuels qui gravitent principalement autour du modèle d’horloge interne et en particulier le modèle du striatal beat frequency pour l’explication neurobiologique (Matell and Meck, 2004).Dans le présent travail, nous avions pour ambition de comprendre le rôle de la voie Amygdalo-nigro-striée (ANS) dans la mise en place du processus attentionnel dans un apprentissage associatif orienté vers un stimulus sensoriel discret comme temporel chez le rat. Nous voulions également examiner le rôle de cette voie dans l’évolution du processus attentionnel après surentraînement ou automatisation. Pour la réalisation de cet objectif, nous avons comparé les effets des lésions croisées du CeA dans un hémisphère et la voie nigro-striée dans l’autre hémisphère (disconnection de la voie amygdalo-nigro-striée ; groupe Contra), avec des lésions du CeA et de la voie nigro-striée dans le même hémisphère (groupe Ipsi). Un troisième groupe a fait l’objet d’une lésion bilatérale du CeA seulement (groupe Amy) et un quatrième groupe n’est pas lésé. A travers nos trois groupes expérimentaux (Contra, Ipsi et Amy) et notre groupe contrôle (Sham), nous avons montré l’implication du CeA dans la modulation du processus attentionnel au moment d’un changement dans la situation expérimentale (surprise), aussi bien en présence d’un stimulus sensoriel discret appétitif que d’un stimulus temporel dans un contexte aversif. Nous avons également montré que la voie ANS est impliquée dans la mise en place de l’automatisation et que probablement il y a un effet différenciel entre la partie postérieure et antérieure du CeA. Nos travaux ont mis également en évidence l’implication de la voie nigro-striée dans la discrimination temporelle et de la voie ANS dans le traitement attentionnel dans des tâches de perception temporelle. Ce traitement est différent selon si le jugement concerne des durées courtes ou durées longues. / Associative learning is a highly complex mechanism, involving several processes at the same time. The attentional process is one of the first to be mobilized during an association; it would also be involved to extract the temporal parameters associated with an unconditional biologically meaningful stimulus even before any effective association (Balsam, Drew, and Yang 2002). Some studies have shown the involvement of certain neurobiological structures, which may underlie attentional processes. For the Holland PC team, for example, orientation responses to a conditioned stimulus (top-down attention) (Lee et al., 2005) involve the central nucleus and nigro-striatal dopaminergic projections, whereas presentation of a new stimulus during an association (bottom-up attention) would rather imply the substancia inominata which would be modulated by the central nucleus of amygdala (CeA) and the parietal cortex (Holland and Gallagher 2006). At the same time, in temporal discrimination in which associative learning requires, besides discrete sensory stimuli, performances related to the judgment of durations, the mechanism of the attentional process mobilizes other conceptual models that gravitate mainly around the internal clock model and, in particular, the striatal beat frequency model which propose also neurobiological explanations (Matell & Meck, 2004). In this work, we aimed at understanding the role of the Amygdalo-nigro-striatal (ANS) circuit in the development of the attentional process in associative learning oriented towards discrete and temporal sensory stimuli in the rat. We also aimed at examining the role of this circuit in the evolution of the attentional process after over-training permitting the development of habits. In order to achieve this objective, we compared performance of rats with cross-lesion by altering the CeA in one hemisphere and the nigro-striatal circuit in the other hemisphere (Amygdalo-nigro-striatal disconnection; Contra group) to rats with lesions in the same hemisphere (CeA and nigro-striatal circuit: group Ipsi). A third group was submitted to bilateral lesions of the CeA (Amy group). A control group had pseudo lesions (groupe Sham).Through our three experimental groups (Contra, Ipsi and Amy) and the control group (Sham), we have shown the involvement of the CeA in the modulation of the attentional process when a novelty was introduced in the experimental situation (surprise) both in the presence of an appetitive discrete sensory stimulus and of a temporal stimulus in an aversive context. We have also shown that the ANS circuit is involved in habit formation and that there is probably a differential effect between the posterior and anterior part of the CeA. Our work also highlighted the implication of the nigro-striatal circuit in temporal discrimination and of the ANS circuit in the attentional treatment in temporal perception tasks, this effect being different depending on whether the discrimination concerns short or long durations.
19

MOLECULAR PERTURBATIONS IN SYNUCLEINOPATHY DISORDERS: INSIGHTS FROM PRE-CLINICAL TO HUMAN NEUROPATHOLOGY

Paola C. Montenegro (5930060) 15 May 2019 (has links)
<div><p>Parkinson’s disease (PD) is a devastating neurodegenerative disorder that affects 10 million people worldwide and is characterized by pronounced motor symptoms. Dementia with Lewy Bodies (DLB) involves both cognitive and motor deficits and affects ~1 million people in the United States. To date there is no cure for PD or DLB, and current treatments address only a subset of the symptoms that define these diseases. PD and DLB are ‘synucleinopathies’, defined as disorders involving the accumulation in patients’ brains of Lewy bodies. Lewy bodies are cellular inclusions that consist largely of aggregated species of alpha-synuclein (aSyn), a presynaptic protein that exists as both cytosolic and membrane-bound forms. Pathophysiological findings suggest that aggregated aSyn is involved in neurodegeneration in PD and DLB. However, mechanisms by which aSyn forms neurotoxic aggregates, and neurotoxic processes that distinguish different synucleinopathies such as PD and DLB, are poorly understood. To address these gaps, we have (i) designed a protocol to establish a primary cell culture model that can recapitulate key neuropathological features of PD, (ii) examined effects of expressing aSyn variants in a rat model of PD, and (iii) examined the expression profiles of neuroprotective genes in PD and DLB brain specimens.</p><p> </p><p>In the first part of my thesis, I describe the development of an optimized protocol to prepare primary midbrain and cortical cultures from rat embryonic brains for the study of PD and other synucleinopathies. The establishment of cellular models that simulate specific aspects of neuropathology can enable the characterization of molecular perturbations that lead to dopaminergic (DA) neuronal death. Our primary midbrain mixed culture model provides an outstanding opportunity to explore therapeutic strategies to rescue DA neurons from toxicity elicited by a range of PD-related insults. In addition, our primary cortical mixed cultures can be used to model cortical neuropathology in various CNS disorders including synucleinopathies.</p><p> </p><p>A number of mutations in the gene that codes for aSyn are associated with familial, early-onset forms of PD. A major goal of my thesis research is to characterize neurotoxic effects of a recently discovered familial substitution, A53E. This mutant was chosen based on the rationale that the introduction of a negatively charged residue at position 53 could potentially interfere with aSyn-membrane interactions and favor A53E aggregation, as we described for other familial aSyn mutants. For the first time, we have reproduced the neurotoxicity of A53E seen in human patients by expressing the mutant protein in rat midbrain. Rats injected unilaterally in the substantia nigra (SN) with rAAV encoding A53E and another familial mutant, A53T, but not rAAV encoding WT aSyn or a vector-control (‘stuffer’) virus, exhibited a significant motor impairment. Immunohistochemical analysis at 14 weeks after the viral injection revealed that brain sections from aSyn-expressing rats exhibit key features reminiscent of neuropathology in human PD, including nigral dopaminergic neuron loss (confirmed by unbiased stereology), striatal terminal depletion, and aSyn inclusion formation. In addition, it was determined that WT aSyn and the A53E and A53T mutants invaded the non-injected substantia nigra, implying that expressed aSyn protein can spread throughout the brain in the rat rAAV-aSyn model. These results yield insights into the molecular basis for the neurotoxicity of A53E and shed light on a potential role for membrane-induced aSyn aggregation in PD pathogenesis in vivo, thus setting the stage for developing therapies to slow neurodegeneration in the brains of familial and idiopathic PD patients. </p><p> </p><p>aSyn neurotoxicity varies with the expression of neuroprotective proteins, and misfolded aSyn affects cellular functions and gene expression. These observations suggest that differential gene expression patterns can inform us about similarities and differences in pathogenic mechanisms of different synucleinopathy disorders. A third phase of my thesis research was aimed at determining the expression levels of a panel of candidate neuroprotective genes in post-mortem brain samples from DLB and PD patients and age-matched controls (5 individuals in each group). mRNAs encoding the following proteins were quantified via qRT-PCR in homogenates prepared from the frontal cortex and the BA24 region encompassing the cingulate gyrus: DJ-1, a protein with antioxidant and chaperone activities; PGC1α, a master regulator of mitochondrial biogenesis and oxidative metabolism; MsrA, an antioxidant enzyme responsible for repairing oxidatively damaged proteins; and ATP13A2, a lysosomal protein involved in autophagy. In addition to yielding new insights into differential gene expression patterns in cortex versus cingulate gyrus, the data revealed differences in mRNA expression levels in DLB versus non-DLB cortical tissue. Although levels of all four neuroprotective mRNAs were increased (or showed a trend towards being increased) in DLB cortex, Western blot analysis revealed that only the DJ-1 and PGC1α proteins showed a trend towards being up-regulated, whereas levels of ATP13A2 and MsrA were unchanged. These findings suggest that there is a failure to induce cellular antioxidant responses and lysosomal autophagy at the protein level in DLB cortex, and in turn this failure could contribute to neuropathology. Interestingly, analysis of the same panel of neuroprotective genes in PD cortical samples did not show significant differences in mRNA or protein levels compared to control samples, suggesting that different neuroprotective mechanisms are induced in DLB versus PD cortex. These studies shed light on brain-region specific changes in gene expression associated with different synucleinopathy disorders, and they set the stage for developing new diagnostic tests and therapeutic strategies.</p></div><br>
20

Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age

Passow, Susanne, Thurm, Franka, Li, Shu-Chen 24 July 2017 (has links) (PDF)
Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate short- and long-term cognitive and brain plasticity in old age.

Page generated in 0.071 seconds