• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 13
  • 11
  • 10
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 121
  • 35
  • 34
  • 31
  • 18
  • 17
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Stromal components and micro-RNAs as biomarkers in pancreatic cancer

Franklin, Oskar January 2016 (has links)
Background Pancreatic ductal adenocarcinoma (PDAC) patients have the poorest 5-year survival rates of all cancer forms. It is difficult to diagnose at early disease stages, tumour relapse after surgery is common, and current chemotherapies are ineffective. Carbohydrate antigen 19-9 (Ca 19-9), the only clinically implemented PDAC biomarker, is insufficient for diagnostic and screening purposes. PDAC tumours are characterised by a voluminous stroma that is rich in extracellular matrix (ECM) molecules such as collagens, hyaluronan (HA) and matricellular proteins. These stromal components have been suggested to promote PDAC cell migration, proliferation, evasion of apoptosis and chemotherapy resistance. Those events are mediated via interactions with adhesion receptors, such as integrins and CD44 receptors expressed on cancer cell surfaces. Micro-RNAs (miRNA) post-transcriptionally regulate gene expression in health and disease. At the time of PDAC diagnosis, miRNA levels are altered both in plasma and tumour tissue. Before PDAC diagnosis, tissue miRNA levels are altered in precursor lesions, raising the possibility that plasma miRNAs might aid in early detection. In this thesis, it is hypothesised that stromal components and miRNAs can serve as tissue or blood based biomarkers in PDAC. The aims are: (1) to characterise the expression of stromal components and their receptors in normal and cancerous tissue; (2) to find potential stroma-associated tissue and blood-based biomarkers for diagnosis and prognosis estimates; (3) to determine the cellular effects of type IV collagen (Col IV) in PDAC; (4) to determine if plasma miRNAs that are altered in manifest PDAC can be used to diagnose PDAC earlier. Methods The expression patterns of Col IV, Col IV-binding integrin subunits (α1, α2, β1), Endostatin, Osteopontin (OPN) and Tenascin C (TNC) were analysed in frozen PDAC and normal pancreatic tissue. A tissue microarray (TMA) was constructed using formalin-fixed, paraffin-embedded primary tumours and lymph node metastases. The TMA was used to study the expression levels and associations with survival of the standard CD44 receptor (CD44s), its variant isoform 6 (CD44v6), HA, OPN and Col IV. Circulating levels of HA, Col IV, Endostatin, OPN and TNC were measured in PDAC patients and healthy individuals, and compared with conventional tumour markers (Ca 19-9, CEA, Ca 125 and TPS). The functional roles of Col IV were studied in PDAC cell lines by: (1) growth on different matrices (2) blocking Col IV binding integrin subunits, (3) blocking the Col IV domains 7s, CB3 and NC1, and (4) by down regulation of PDAC cell synthesis of Col IV using siRNA transfection. Plasma miRNAs alterations were screened for in samples from patients with manifest disease, using real-time quantitative PCR (RT-qPCR). To find early miRNA alterations, levels of those miRNAs that were altered at diagnosis were measured in prediagnostic plasma samples. Results High tissue expression of both the standard CD44 receptor (CD44s) and its variant isoform CD44v6 as well as low expression of stromal OPN were associated with poor survival. In addition, high CD44s and low OPN predicted poor survival independent of established prognostic factors. Circulating Col IV, Endostatin, OPN, TNC and HA were increased in preoperative samples from PDAC patients. Preoperatively, higher levels of serum-HA and plasma-Endostatin were associated with shorter survival. Postoperatively, higher levels of Col IV, Endostatin and OPN were associated with shorter survival. On the contrary, only one of the conventional tumour markers was associated with survival (Ca 125). Col IV stimulated PDAC cell proliferation and migration and inhibited apoptosis in vitro, dependent on the collagenous domain (CB3) of Col IV and the Col IV binding integrin subunit β1. Reduced endogenous Col IV synthesis inhibited these effects, suggesting that PDAC cells synthesise Col IV to stimulate tumour-promoting events via a newly discovered autocrine loop. 15 miRNAs were altered in early stage PDAC patients and the combination of these markers outperformed Ca 19-9 in discriminating patients from healthy individuals. However, none of the miRNAs were altered in prediagnostic samples, suggesting that plasma miRNA alterations appear late in the disease course. Conclusions Up regulated stromal components in PDAC tumours are detectable in blood samples and are potential diagnostic and prognostic biomarkers in PDAC. High circulating levels of Col IV, Endostatin, OPN and HA predict poor survival, as well as high expression of CD44s and CD44v6 and low expression of OPN in tumour tissue. PDAC cells synthesise Col IV, which forms BM-like structures close to cancer cells and promote tumour progression in vitro via an autocrine loop. Several plasma-miRNAs are altered in PDAC, but are not useful for early discovery.
82

O impacto do diabetes Mellitus do tipo 1 sobre a ação da resposta proliferativa estimulada pela progesterona no ambiente uterino de camundongos. / The impact of type 1 Diabetes Mellitus on the progesterone-mediated cell proliferative response on mice uterine environment.

Santos, Rafael Dalbosco dos 03 December 2015 (has links)
A proliferação celular mediada pela progesterona (P4) é essencial para a funcão uterina. Dessa forma, alterações nesse processo podem comprometer a reprodução. O diabetes do tipo 1 (DM1) está associado a diversos distúrbios reprodutivos. No entanto, o impacto do DM1 sobre a ação da P4 no ambiente uterino ainda não é conhecido. Para isso, utilizamos fêmeas de camundongo DM1 induzidas por aloxana, submetidas à ovarectomia (OVX) e reposição por P4. Verificamos por meio de histomorfometria e imunohistoquímica (PCNA) uma diminuição da área de estroma uterino e do índice de proliferação. As quantificações proteícas por Western blot monstraram um aumento do PR-A nas fêmeas diabéticas OVX e nas tratadas pela P4. Ressalta-se que as fêmeas DM1 tratados pela P4 não apresentaram a mesma expressão do RNAm para o fator de crescimento Hoxa-10. Houve também um aumento do RNAm da p27 nas fêmeas DM1 não tratadas, visto por qPCR. Nossos resultados demonstraram que o DM1 interfere negativamente na resposta proliferativa promovida pela P4. Contribuindo para compreensão dos mecanismos biológicos pelos quais o diabetes compromete as funções reprodutivas. / Progesterone (P4)-mediated cell proliferation is essential for uterine function. Therefore, alteration in this process could compromise reproduction. The type 1 diabetes (DM1) relates to several reproductive disturbs. However, the impact of DM1 on the P4 function is still not elucidated. Thus, we used alloxan-induced diabetic mice females subjected to ovariectomy and hormonal replacement therapy with P4. Histomorphometrical and immunohistochemistry to PCNA approaches showed a decrease of the uterine stromal area and the cell proliferation index. Protein quantification by Western blot showed increased levels of PR-A in both ovariectomized and P4-treated diabetic females. Importantly, P4 did not recovered the mRNA expression to the Hoxa-10 transcription factor in diabetic females. Additionally, qPCR analysis revealed increased level of p27 mRNA in diabetic females non-treated with P4. Together these results show that DM1 has a negative action on the P4-mediated cell proliferative response. These are new and important results to a better understand of the biological mechanisms by which diabetes affects the reproductive functions.
83

Tumor Stroma in Anaplastic Thyroid Carcinoma : Interstitial Collagen and Tumor Interstitial Fluid Pressure

Lammerts, Ellen January 2001 (has links)
<p>Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy in man with stromal fibrosis as one of the main features. Carcinoma cells synthesized no or little collagen I protein. Pro-α1(I) collagen mRNA was expressed by stromal cells throughout the tumor, but expression of procollagen type I protein was restricted to stromal cells situated close to nests of carcinoma cells. These data suggest that the carcinoma cells stimulated collagen type I deposition by increasing pro-α1(1) collagen mRNA translation. </p><p>Cocultures, of the human ATC cell line KAT-4, with fibroblasts under conditions that allow the study of stimulatory factors on collagen mRNA translation, showed that the KAT-4 cells stimulated collagen type I protein synthesis in fibroblasts. Specific inhibitors of PDGF and TGF-β1 and -β3 were able to inhibit this carcinoma cell-induced stimulation of collagen type I synthesis. These findings suggest that tumor cells were able to stimulate collagen mRNA translation in stromal fibroblasts by, at least in part, transferring PDGF and/or TGF-β1 and -β3.</p><p>Xenograft transplantation of different ATC cell lines into athymic mice demonstrated that the low collagen producing carcinoma cell lines were less tumorigenic compared to non-collagen producing carcinoma cell lines. The morphology of tumors derived from non-collagen producing ATC cell lines showed a well demarked stroma surrounding carcinoma cell nests. </p><p>TGF-β1 and -β3 were found to play a role in generating a high tumor interstitial fluid pressure (TIPF) in experimental KAT-4 tumors. A specific inhibitor of TGF-β1 and -β3 was able to lower TIPF and reduce tumor growth after a prolonged period of treatment, suggesting that TGF-β1 and -β3 have a role in maintaining a stroma that support tumor growth.</p>
84

Tumor Stroma in Anaplastic Thyroid Carcinoma : Interstitial Collagen and Tumor Interstitial Fluid Pressure

Lammerts, Ellen January 2001 (has links)
Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy in man with stromal fibrosis as one of the main features. Carcinoma cells synthesized no or little collagen I protein. Pro-α1(I) collagen mRNA was expressed by stromal cells throughout the tumor, but expression of procollagen type I protein was restricted to stromal cells situated close to nests of carcinoma cells. These data suggest that the carcinoma cells stimulated collagen type I deposition by increasing pro-α1(1) collagen mRNA translation. Cocultures, of the human ATC cell line KAT-4, with fibroblasts under conditions that allow the study of stimulatory factors on collagen mRNA translation, showed that the KAT-4 cells stimulated collagen type I protein synthesis in fibroblasts. Specific inhibitors of PDGF and TGF-β1 and -β3 were able to inhibit this carcinoma cell-induced stimulation of collagen type I synthesis. These findings suggest that tumor cells were able to stimulate collagen mRNA translation in stromal fibroblasts by, at least in part, transferring PDGF and/or TGF-β1 and -β3. Xenograft transplantation of different ATC cell lines into athymic mice demonstrated that the low collagen producing carcinoma cell lines were less tumorigenic compared to non-collagen producing carcinoma cell lines. The morphology of tumors derived from non-collagen producing ATC cell lines showed a well demarked stroma surrounding carcinoma cell nests. TGF-β1 and -β3 were found to play a role in generating a high tumor interstitial fluid pressure (TIPF) in experimental KAT-4 tumors. A specific inhibitor of TGF-β1 and -β3 was able to lower TIPF and reduce tumor growth after a prolonged period of treatment, suggesting that TGF-β1 and -β3 have a role in maintaining a stroma that support tumor growth.
85

Early effects of castration therapy in non-malignant and malignant prostate tissue

Ohlson, Nina January 2005 (has links)
Early Effects of Castration Therapy in Non-malignant and Malignant Prostate Tissue BACKGROUND. Androgen ablation, the standard treatment for advanced prostate cancer, results in increased apoptosis, decreased cell proliferation and subsequent involution of the prostate gland. The mechanisms behind these responses are largely unknown, but effects in the prostatic epithelium are believed to be mediated by primary changes in the stroma. The purpose of this thesis was to investigate short-term cellular effects of castration-induced prostate tissue involution in mice and humans. METHODS. Prostate tissue factors affected by castration were investigated using cDNA-arrays, micro-dissection, RT-PCR, immunohistochemistry and Western blot analysis. The effects of local insulin-like growth factor-1 (IGF-1) administration were investigated in intact and castrated mice. Non-malignant and malignant epithelial and stromal cells were micro-dissected from human prostate biopsies taken before and within two weeks after castration treatment from patients with advanced prostate cancer. These tissue compartments were analyzed by RT-PCR and/or immunohistochemistry for IGF-1, IGF-1 receptor, androgen receptor (AR) and prostate specific antigen (PSA) expression. Treatment-induced changes in these factors were related to apoptosis and proliferation as well as to clinical data and cancer specific survival. RESULTS. Similar to our observations in mouse ventral prostate (VP), non-malignant and malignant human prostate tissues responded with increased epithelial cell apoptosis and decreased proliferation after androgen withdrawal. Also, the PSA mRNA levels were reduced within the first days after therapy both in non-malignant and malignant human prostate epithelial cells. However, neither of these changes was related to subsequent nadir serum PSA or to survival. Locally injected IGF-1 increased epithelial cell proliferation and vascular volume in intact but not in castrated mice. IGF-1 was found to be mostly, but not exclusively, expressed in the stroma, and it decreased rapidly after castration in both humans and mice. This decrease was, however, largely absent in prostate tumor stroma, and tumor stroma cells showed lower pre-treatment levels of AR than stroma surrounding normal epithelial glands. Furthermore, decreased levels of IGF-1 mRNA in the non-malignant and tumor stroma cells, and in tumor epithelial cells in response to castration, were associated with high levels of apoptosis in epithelial cells after therapy. CONCLUSIONS. In the prostate, IGF-1 may be an important mediator of stroma-epithelial cell interaction that is involved in castration-induced epithelial and vascular involution. Moreover, reduced AR in the tumor stroma may play an important role in prostate cancer progression towards androgen-independency, resulting in inadequate IGF-1 reduction and apoptosis induction in response to castration. Most primary tumors initially respond to castration with markedly decreased PSA synthesis and cell proliferation, and moderately increased apoptosis. Death due to metastatic disease is, however, still common, despite primary tumor regression. This may suggest that tumor cells in metastases respond differently to treatment than primary tumor cells, probably influenced by a different and possibly androgen-independent stroma. Further studies should test the hypothesis that the effect of castration therapy can be enhanced by simultaneous blocking of IGF-1 signaling.
86

Targeting the prostate tumor microenvironment and vasculature : the role of castration, tumor-associated macrophages and pigment epithelium-derived factor / Mikromiljö och angiogenes i prostatacancer : effekter av kastration, tumör associerade makrofager och Pigment epithelium-derived factor

Halin, Sofia January 2009 (has links)
BACKGROUND: Prostate cancer is the most common cancer among Swedish men. For patients with metastatic prostate cancer the standard therapy is castration, a treatment that initially provides symptomatic relief but unfortunately is not curative. New therapeutic targets for advanced prostate cancer are therefore needed.  Prostate cancers are composed of tumor epithelial cells as well as many non-epithelial cells such as cancer associated fibroblasts, blood vessels and inflammatory cells.  Many components of the tumor microenvironment such as tumor associated macrophages and angiogenesis have been shown to stimulate tumor progression. This thesis aims to explore mechanisms by which the local environment influences prostate tumor growth and how such mechanisms could be targeted for treatment. MATERIALS AND METHODS: We have used animal models of prostate cancer, in vitro cell culture systems and clinical materials from untreated prostate cancer patients with long follow up. Experiments were evaluated with stereological techniques, immunohistochemistry, western blotting, quantitative real-time PCR, PCR arrays and laser micro dissection. RESULTS: We found that the presence of a tumor induces adaptive changes in the surrounding non-malignant prostate tissue, and that androgen receptor negative prostate tumor cells respond to castration treatment with temporarily reduced growth when surrounded by normal castration-responsive prostate tissue. Further, we show that macrophages are important for prostate tumor growth and angiogenesis in the tumor and in the surrounding non-malignant tissue. In addition, the angiogenesis inhibitor Pigment epithelium-derived factor (PEDF) was found  to be down-regulated in metastatic rat and human prostate tumors. Over-expression of PEDF inhibited experimental prostate tumor growth, angiogenesis and metastatic growth and stimulated macrophage tumor infiltration and lymphangiogenesis. PEDF was found to be down-regulated by the prostate microenvironment and tumor necrosis factor (TNF) α. CONCLUSIONS: Our studies indicate that not only the nearby tumor microenvironment but also the surrounding non-malignant prostate tissue are important for prostate tumor growth. Both the tumor and the surrounding non-malignant prostate were characterized by increased angiogenesis and inflammatory cell infiltration. Targeting the surrounding prostate tissue with castration, targeting tumor associated macrophages, or targeting the vasculature directly using inhibitors like PEDF were all shown to repress prostate tumor growth and could prove beneficial for patients with advanced prostate cancer.
87

Basement membrane collagens in pancreatic cancer : novel stroma-derived tumor markers and regulators of cancer cell growth / Basalmembranskollagener vid pankreascancer : utgör nya stromala tumörmarkörer och reglerar cancercellstillväxt

Öhlund, Daniel January 2010 (has links)
Background: Among the common malignancies, pancreatic cancer has the shortest long-term survival. The aggressive, rapid, and infiltrative growth pattern of pancreatic cancer, together with the lack of specific symptoms, often leads to late diagnosis. Metastases are frequently found at the time of diagnosis, which prevents curative surgical treatment. Good tumor markers would enable early detection, thus improving the prognosis. Unfortunately, no such markers are available in the clinic. The tumor stroma is defined as the non-malignant cells and the extracellular matrix (ECM) of a cancer. Pancreatic cancer is characterized by an abundant tumor stroma, rich in ECM proteins such as collagens, which have been shown to play important roles in tumor progression. Furthermore, pancreatic cancer cells produce large quantities of ECM proteins, especially the basement membrane (BM) protein type IV collagen. All epithelial cells are anchored to a BM, which must be degraded in order for an in situ cancer to become invasive. Matrix metalloproteinases (MMPs) are enzymes involved in BM degradation. In this thesis, the tumor stroma of pancreatic cancer is studied, focusing on the BM proteins type IV and type XVIII collagen, with the aim to clarify if the stroma could be a source of novel tumor markers for this form of cancer. Additionally, the role of type IV collagen produced by the cancer cells is studied. Methods: Expression patterns of type IV and type XVIII collagen, MMPs involved in collagen degradation, and collagen receptors (integrins) were studied by immunoflourescence in both normal and pancreatic cancer tissue, and in pancreatic cancer cell lines. Circulating plasma levels of type IV and type XVIII collagen and conventional tumor markers (TPS, Ca 19-9, CEA and Ca 125) were measured in controls and pancreatic cancer patients at the time of diagnosis and after treatment. The role of cancer cell produced type IV collagen was studied in human pancreatic cancer cell lines by functional blocking of integrin receptors (integrin a1, a2 and b1) and integrin-binding sites on type IV collagen, and by siRNA-induced down-regulation of type IV collagen synthesis. Proliferation was analyzed by a luminescence based cell viability assay, migration by time-lapse microscopy, and apoptosis by M30-neoepitope detection. Results: MMPs involved in BM degradation were upregulated in pancreatic cancer tissue. The expression of type XVIII collagen shifted from a general BM expression pattern in normal tissue, to mainly being found in the tumor vasculature in pancreatic cancer. Type IV collagen, on the other hand, remained highly expressed in the vicinity of the cancer cells. The a1, a2, and b1 integrin receptors were highly expressed at the cancer cell surface. Both down-regulation of type IV collagen synthesis and blocking the integrin/type IV collagen interaction decreased cell proliferation and migration. The proliferative capacity was rescued by the addition of exogenous type IV collagen. Furthermore, the circulating levels of both type IV and type XVIII collagen were increased in pancreatic cancer patients at the time of diagnosis compared to controls. After treatment, the levels were normalized for type XVIII collagen, whereas the levels of type IV collagen remained high after surgery. High postoperative levels of type IV collagen were associated with short overall survival. A similar association to short survival was found for preoperative type XVIII collagen levels. No such associations to survival could be detected for the conventional markers.   Conclusion: The results of this thesis show that type IV and type XVIII collagens can serve as tumor markers for pancreatic cancer with advantages compared to conventionally used markers. Additionally, evidence is provided of an autocrine loop, involving type IV collagen and its integrin receptors, with importance for retaining a proliferative and migratory phenotype in pancreatic cancer cells.
88

Influence du stroma et des cellules souches mésenchymateuses sur la dissémination et la résistance au traitement des carcinomes ovariens épithéliaux

Touboul, Cyril 21 November 2012 (has links) (PDF)
Le cancer épithélial de l'ovaire (EOC) a la particularité d'être diagnostiqué à un stade avancé chez 75% des patientes et de récidiver dans un grand nombre de cas malgré une bonne réponse initiale à la chimiothérapie, expliquant ainsi son pronostic sombre. Le rôle du microenvironnement tumoral semble être de premier plan dans le développement et la survie des cellules cancéreuses mais il existe encore peu de données concernant les cellules mésenchymateuses souches (MSC). Dans ce travail nous avons donc cherché à déterminer les mécanismes moléculaires entre les MSC et les cellules tumorales ovariennes. Dans la première partie de ce travail, nous avons mis en évidence l'émergence d'un profile pro-métastatique des cellules tumorales ovariennes après contact avec les MSC. Nous avons ensuite développé un modèle d'infiltration tumorale 3D révélant que les MSC augmentaient la dissémination tumorale ovarienne par la sécrétion d'IL6. Enfin nous avons démontré que les MSC étaient capables d'induire chez les cellules tumorales ovariennes un phénotype thermotolérant lié à la sécrétion CXCL12. Ces données vont donc toutes dans le même sens en démontrant les propriétés pro-tumorales des MSC et ouvrent de nouvelles perspectives de thérapies ciblant les interactions entre le stroma et la tumeur.
89

Molecular Regulation of Inflammation and Angiogenesis in the Tumor Microenvironment

Dieterich, Lothar January 2011 (has links)
Tumor growth and progression not only depend on properties of the malignant cells but are strongly influenced by the tumor microenvironment. The tumor stroma consists of various cell types such as inflammatory cells, endothelial cells and fibroblasts, which can either inhibit or promote tumor growth. Consequently, therapeutic targeting of the tumor stroma is increasingly recognized as an important tool to fight cancer. Two particularly important processes that contribute to the pathology of most types of tumors are angiogenesis and inflammation. In order to target these processes specifically and efficiently, it is fundamental to identify and understand the factors and signaling pathways involved. This thesis initially describes the multiple functions of the small heat shock protein αB-crystallin in the tumor microenvironment. αB-crystallin was first identified in a screen of proteins specifically up-regulated in endothelial cells forming vessel-like structures. We found that αB-crystallin is expressed in a subset of tumor vessels and promotes angiogenesis by inhibiting endothelial apoptosis, suggesting that targeting of αB-crystallin might inhibit angiogenesis and thereby decrease tumor growth. However, we also discovered an important role of αB-crystallin in regulation of inflammatory processes. We show that αB-crystallin increases the surface levels of E-selectin, an important leukocyte-endothelial adhesion molecule. Thereby, αB-crystallin may alter leukocyte recruitment to inflamed tissues such as the tumor stroma. In addition, we found that αB-crystallin is expressed in immature myeloid cells that accumulate in the periphery and at the tumor site during tumor development. Importantly, lack of αB-crystallin resulted in increased accumulation of immature myeloid cells, which might increase tumor associated inflammation. Finally, through combining laser microdissection of vessels from human tissue and microarray analysis, we identified a gene expression signature specifically associated with vessels in high grade glioma. Blood vessels in malignant glioma are highly abnormal and contribute to the pathology of the disease. Thus, knowledge about the molecular set-up of these vessels might contribute to the development of future vascular normalizing treatments.
90

O impacto do diabetes Mellitus do tipo 1 sobre a ação da resposta proliferativa estimulada pela progesterona no ambiente uterino de camundongos. / The impact of type 1 Diabetes Mellitus on the progesterone-mediated cell proliferative response on mice uterine environment.

Rafael Dalbosco dos Santos 03 December 2015 (has links)
A proliferação celular mediada pela progesterona (P4) é essencial para a funcão uterina. Dessa forma, alterações nesse processo podem comprometer a reprodução. O diabetes do tipo 1 (DM1) está associado a diversos distúrbios reprodutivos. No entanto, o impacto do DM1 sobre a ação da P4 no ambiente uterino ainda não é conhecido. Para isso, utilizamos fêmeas de camundongo DM1 induzidas por aloxana, submetidas à ovarectomia (OVX) e reposição por P4. Verificamos por meio de histomorfometria e imunohistoquímica (PCNA) uma diminuição da área de estroma uterino e do índice de proliferação. As quantificações proteícas por Western blot monstraram um aumento do PR-A nas fêmeas diabéticas OVX e nas tratadas pela P4. Ressalta-se que as fêmeas DM1 tratados pela P4 não apresentaram a mesma expressão do RNAm para o fator de crescimento Hoxa-10. Houve também um aumento do RNAm da p27 nas fêmeas DM1 não tratadas, visto por qPCR. Nossos resultados demonstraram que o DM1 interfere negativamente na resposta proliferativa promovida pela P4. Contribuindo para compreensão dos mecanismos biológicos pelos quais o diabetes compromete as funções reprodutivas. / Progesterone (P4)-mediated cell proliferation is essential for uterine function. Therefore, alteration in this process could compromise reproduction. The type 1 diabetes (DM1) relates to several reproductive disturbs. However, the impact of DM1 on the P4 function is still not elucidated. Thus, we used alloxan-induced diabetic mice females subjected to ovariectomy and hormonal replacement therapy with P4. Histomorphometrical and immunohistochemistry to PCNA approaches showed a decrease of the uterine stromal area and the cell proliferation index. Protein quantification by Western blot showed increased levels of PR-A in both ovariectomized and P4-treated diabetic females. Importantly, P4 did not recovered the mRNA expression to the Hoxa-10 transcription factor in diabetic females. Additionally, qPCR analysis revealed increased level of p27 mRNA in diabetic females non-treated with P4. Together these results show that DM1 has a negative action on the P4-mediated cell proliferative response. These are new and important results to a better understand of the biological mechanisms by which diabetes affects the reproductive functions.

Page generated in 0.0709 seconds