• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Impact of Stromal Cells on the Metabolism of Ovarian Cancer Cells in 3D Culture

Pyne, Emily Seton 03 February 2017 (has links)
Academic: Ovarian cancer is the leading cause of death among female gynecologic cancers. Current treatments include surgical debulking, and chemotherapy. However, better interventions are needed to reduce the mortality rate of metastatic disease. Ovarian cancer cells have displayed the ability to aggregate and form 3D homogeneous and heterogeneous spheroids, which can function as micrometastases. Ovarian cancer spheroids survive independently prior to adhering to an endothelial tissue. Since aggregation has been shown to provide a survival advantage to the spheroids and increased their aggressive phenotype, this study aimed to investigate how the metabolism of ovarian cancer cells change in 3-dimensional (3D) culture. Examining metabolic pathways and identifying markers of metabolic change could provide the scientific base for new, targeted interventions for this disease. Spheroids of both homogeneous and heterogeneous composition demonstrated overall lower metabolic capacity than their adherent counterparts. Spheroids had a lower basal energetic demand than adherent cells, paralleled by lower maximal respiration capacity, glycolytic capacity, and spare respiratory capacity. We conclude that the lower energetic demand of spheroids may be a mechanism to prolong death by reserving energy and metabolic cellular processes; this may render anti-metabolic drug treatment with AICAR or metformin ineffective against disseminating ovarian cancer aggregates. General: Ovarian cancer is currently the leading cause of death among female gynecologic cancers. While treatments exist, better interventions are needed to reduce the mortality rate in this form of cancer. Ovarian cancer cells have displayed the ability to aggregate and form 3D homogeneous and heterogeneous spheroids, which can function as micrometastases. Ovarian cancer spheroids survive independently prior to adhering to an endothelial tissue. Since aggregation has been shown to provide a survival advantage to the spheroids and increased their aggressive phenotype, this study aims to investigate how the metabolism of ovarian cancer cells change in 3-dimensional (3D) culture. Examining metabolic pathways and identifying markers of metabolic change could provide the scientific base for new, targeted interventions for this disease. / Master of Science

Page generated in 0.1758 seconds