1 |
An Isomorphism Theorem for GraphsCulp, Laura 01 December 2009 (has links)
In the 1970’s, L. Lovász proved that two graphs G and H are isomorphic if and only if for every graph X , the number of homomorphisms from X → G equals the number of homomorphisms from X → H . He used this result to deduce cancellation properties of the direct product of graphs. We develop a result analogous to Lovász’s theorem, but in the class of graphs without loops and with weak homomorphisms. We apply it prove a general cancellation property for the strong product of graphs.
|
2 |
Local Prime Factor Decomposition of Approximate Strong Product GraphsHellmuth, Marc 07 July 2010 (has links) (PDF)
In practice, graphs often occur as perturbed product structures, so-called approximate graph products. The practical application of the well-known prime factorization algorithms is therefore limited, since
most graphs are prime, although they can have a product-like structure.
This work is concerned with the strong graph product. Since strong product graphs G contain
subgraphs that are itself products of subgraphs of the underlying factors of G, we follow the idea to
develop local approaches that cover a graph by factorizable patches and then use this information to
derive the global factors.
First, we investigate the local structure of strong product graphs and introduce the backbone B(G)
of a graph G and the so-called S1-condition. Both concepts play a central role for determining the
prime factors of a strong product graph in a unique way. Then, we discuss several graph classes,
in detail, NICE, CHIC and locally unrefined graphs. For each class we construct local, quasi-linear
time prime factorization algorithms. Combining these results, we then derive a new local prime
factorization algorithm for all graphs.
Finally, we discuss approximate graph products. We use the new local factorization algorithm to
derive a method for the recognition of approximate graph products. Furthermore, we evaluate the
performance of this algorithm on a sample of approximate graph products.
|
3 |
Parity Domination in Product GraphsWhisenant, Christopher 16 June 2011 (has links)
An odd open dominating set of a graph is a subset of the graph’s vertices with the property that the open neighborhood of each vertex in the graph contains an odd number of vertices in the subset. An odd closed r-dominating set is a subset of the graph’s vertices with the property that the closed r-ball centered at each vertex in the graph contains an odd number of vertices in the subset. We first prove that the n-fold direct product of simple graphs has an odd open dominating set if and only if each factor has an odd open dominating set. Secondly, we prove that the n-fold strong product of simple graphs has an odd closed r-dominating set if and only if each factor has an odd closed r-dominating set.
|
4 |
Local Prime Factor Decomposition of Approximate Strong Product Graphs: Local Prime Factor Decompositionof Approximate Strong Product GraphsHellmuth, Marc 22 April 2010 (has links)
In practice, graphs often occur as perturbed product structures, so-called approximate graph products. The practical application of the well-known prime factorization algorithms is therefore limited, since
most graphs are prime, although they can have a product-like structure.
This work is concerned with the strong graph product. Since strong product graphs G contain
subgraphs that are itself products of subgraphs of the underlying factors of G, we follow the idea to
develop local approaches that cover a graph by factorizable patches and then use this information to
derive the global factors.
First, we investigate the local structure of strong product graphs and introduce the backbone B(G)
of a graph G and the so-called S1-condition. Both concepts play a central role for determining the
prime factors of a strong product graph in a unique way. Then, we discuss several graph classes,
in detail, NICE, CHIC and locally unrefined graphs. For each class we construct local, quasi-linear
time prime factorization algorithms. Combining these results, we then derive a new local prime
factorization algorithm for all graphs.
Finally, we discuss approximate graph products. We use the new local factorization algorithm to
derive a method for the recognition of approximate graph products. Furthermore, we evaluate the
performance of this algorithm on a sample of approximate graph products.
|
5 |
Codes, graphs and designs related to iterated line graphs of complete graphsKumwenda, Khumbo January 2011 (has links)
In this thesis, we describe linear codes over prime fields obtained from incidence designs of iterated line graphs of complete graphs Li(Kn) where i = 1, 2. In the binary case, results are extended to codes from neighbourhood designs of the line graphs Li+1(Kn) using certain elementary relations. Codes from incidence designs of complete graphs, Kn, and neighbourhood designs of their line graphs, L1(Kn) (the so-called triangular graphs), have been considered elsewhere by others. We consider codes from incidence designs of L1(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In each case, basic parameters of the codes are determined. Further, we introduce a family of vertex-transitive graphs ôn that are embeddable into the strong product L1(Kn) â K2, of triangular graphs and K2, a class which at first sight may seem unnatural but, on closer look, is a repository of graphs rich with combinatorial structures. For instance, unlike most regular graphs considered here and elsewhere that only come with incidence and neighbourhood designs, ôn also has what we have termed as 6-cycle designs. These are designs in which the point set contains vertices of the graph and every block contains vertices of a 6-cycle in the graph. Also, binary codes from incidence matrices of these graphs have other minimum words in addition to incidence vectors of the blocks. In addition, these graphs have induced subgraphs isomorphic to the family Hn of complete porcupines (see Definition 4.11). We describe codes from incidence matrices of ôn and Hn and determine their parameters.
|
6 |
Codes, graphs and designs related to iterated line graphs of complete graphsKumwenda, Khumbo January 2011 (has links)
In this thesis, we describe linear codes over prime fields obtained from incidence designs of iterated line graphs of complete graphs Li(Kn) where i = 1, 2. In the binary case, results are extended to codes from neighbourhood designs of the line graphs Li+1(Kn) using certain elementary relations. Codes from incidence designs of complete graphs, Kn, and neighbourhood designs of their line graphs, L1(Kn) (the so-called triangular graphs), have been considered elsewhere by others. We consider codes from incidence designs of L1(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In each case, basic parameters of the codes are determined. Further, we introduce a family of vertex-transitive graphs ôn that are embeddable into the strong product L1(Kn) â K2, of triangular graphs and K2, a class which at first sight may seem unnatural but, on closer look, is a repository of graphs rich with combinatorial structures. For instance, unlike most regular graphs considered here and elsewhere that only come with incidence and neighbourhood designs, ôn also has what we have termed as 6-cycle designs. These are designs in which the point set contains vertices of the graph and every block contains vertices of a 6-cycle in the graph. Also, binary codes from incidence matrices of these graphs have other minimum words in addition to incidence vectors of the blocks. In addition, these graphs have induced subgraphs isomorphic to the family Hn of complete porcupines (see Definition 4.11). We describe codes from incidence matrices of ôn and Hn and determine their parameters.
|
7 |
Codes, graphs and designs related to iterated line graphs of complete graphsKumwenda, Khumbo January 2011 (has links)
Philosophiae Doctor - PhD / In this thesis, we describe linear codes over prime fields obtained from incidence designs of iterated line graphs of complete graphs Li(Kn) where i = 1, 2. In the binary case, results are extended to codes from neighbourhood designs of the line graphs Li+1(Kn) using certain elementary relations. Codes from incidence designs of complete graphs, Kn, and neighbourhood designs of their line graphs, L1(Kn) (the so-called triangular graphs), have been considered elsewhere by others. We consider codes from incidence designs of L1(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In each case, basic parameters of the codes are determined. Further, we introduce a family of vertex-transitive graphs Γn that are embeddable into the strong product L1(Kn)⊠ K2, of triangular graphs and K2, a class which at first sight may seem unnatural but, on closer look, is a repository of graphs rich with combinatorial structures. For instance, unlike most regular graphs considered here and elsewhere that only come with incidence and neighbourhood designs, Γn also has what we have termed as 6-cycle designs. These are designs in which the point set contains vertices of the graph and every block contains vertices of a 6-cycle in the graph. Also, binary codes from incidence matrices of these graphs have other minimum words in addition to incidence vectors of the blocks. In addition, these graphs have induced subgraphs isomorphic to the family Hn of complete porcupines (see Definition 4.11). We describe codes from incidence matrices of Γn and Hn and determine their parameters. / South Africa
|
8 |
Codes, graphs and designs related to iterated line graphs of complete graphsKumwenda, Khumbo January 2011 (has links)
Philosophiae Doctor - PhD / In this thesis, we describe linear codes over prime fields obtained from incidence
designs of iterated line graphs of complete graphs Li(Kn) where
i = 1,2. In the binary case, results are extended to codes from neighbourhood
designs of the line graphs Li+l(Kn) using certain elementary relations.
Codes from incidence designs of complete graphs, Kn' and neighbourhood designs
of their line graphs, £1(Kn) (the so-called triangular graphs), have been
considered elsewhere by others. We consider codes from incidence designs of
Ll(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In
each case, the basic parameters of the codes are determined.
Further, we introduce a family of vertex-transitive graphs Rn that are
embeddable into the strong product Ll(Kn) ~ K2' of triangular graphs and
K2' a class that at first sight may seem unnatural but, on closer look,
is a repository of graphs rich with combinatorial structures. For instance,
unlike most regular graphs considered here and elsewhere that only come
with incidence and neighbourhood designs, Rn also has what we have termed
as 6-cycle designs. These are designs in which the point set contains vertices
of the graph and every block contains vertices of a 6-cycle in the graph. Also,
binary codes from incidence matrices of these graphs have other minimum
words in addition to incidence vectors of the blocks. In addition, these graphs
have induced subgraphs isomorphic to the family Hn of complete porcupines
(see Definition 4.11). We describe codes from incidence matrices of Rn and
Hn and determine their parameters.
The discussion is concluded with a look at complements of Rn and Hn,
respectively denoted by Rn and Hn. Among others, the complements rn
are contained in the union of the categorical product Ll(Kn) x Kn' and the
categorical product £1(Kn) x Kn (where £1(Kn) is the complement of the
iii
triangular graph £1(Kn)). As with the other graphs, we have also considered
codes from the span of incidence matrices of Rn and Hn and determined some
of their properties.
In each case, automorphisms of the graphs, designs and codes have been
determined. For the codes from incidence designs of triangular graphs, embeddings
of Ll(Kn) x K2 and complements of complete porcupines, we have
exhibited permutation decoding sets (PD-sets) for correcting up to terrors
where t is the full error-correcting capacity of the codes. For the remaining
codes, we have only been able to determine PD-sets for which it is possible
to correct a fraction of t-errors (partial permutation decoding). For these
codes, we have also determined the number of errors that can be corrected
by permutation decoding in the worst-case.
|
9 |
Rainbow Connection Number Of Graph Power And Graph ProductsArunselvan, R 11 1900 (has links) (PDF)
The minimum number of colors required to color the edges of a graph so that any two distinct vertices are connected by at least one path in which no two edges are colored the same is called its rainbow connection number. This graph parameter was introduced by Chartrand et al. in 2008. The problem has garnered considerable interest and several variants of the initial version have since been introduced. The rainbow connection number of a connected graph G is denoted by rc(G). It can be shown that the rainbow connection number of a tree on n vertices is n -1. Hence |G|-1 is an upper bound for rc(G)of any non-trivial graph G. For all non-trivial, bridge-less and connected graphs G, Basavaraju etal. Showed that rc(G) can be upper-bounded by a quadratic function of its radius. In addition they also proved the tightness of the bound. It is clear that we cannot hope to get an upper-bound better than |G| - 1 in the case of graphs with bridges. An immediate and natural question is the following: Are there classes of bridge-less graphs whose rainbow connection numbers are linear functions of their radii? This question is of particular interest since the diameter is a trivial lower bound for rc(G). We answer in affirmative to the above question. In particular we studied three (graph) product operations (Cartesian, Lexicographic and Strong) and the graph powering operation. We were able to show that the rainbow connection number of the graph resulting from any of the above graph operations is upper-bounded by 2r(G)+c, where r(G) is radius of the resultant graph and c ε {0, 1, 2}.
|
Page generated in 0.0622 seconds