• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 16
  • 10
  • 7
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 159
  • 159
  • 78
  • 72
  • 62
  • 52
  • 51
  • 50
  • 39
  • 38
  • 36
  • 31
  • 30
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electronic and Magnetic Properties of Double Perovskites and Oxide Interfaces

Erten, Onur 26 December 2013 (has links)
No description available.
2

Theoretical Study of Spin-wave Effects in Quantum Ferromagnets

Bharadwaj, Sripoorna Paniyadi Krishna 06 September 2017 (has links)
In this dissertation, we examine quantum ferromagnets and determine various effects of the magnetic Goldstone modes or "magnons'' in these systems. Firstly, we calculate the magnon contribution to the transport relaxation rate of conduction electrons in metallic ferromagnets and find that at asymptotically low temperatures, the contribution behaves as T^2 exp(-T_0/T) and not as T^2 predicted previously. To perform these calculations, we derive and use a very general effective theory for metallic ferromagnets. This activation barrier-like behavior is due to the fact that spin waves only couple electrons from different Stoner subbands that arise from the splitting of the conduction band in presence of a nonzero magnetization. The T^2 behavior is found to be valid only in a pre-asymptotic temperature window. The temperature scale T_0 is the energy of the least energetic ferromagnon that couples electrons of different spins. Second, we discuss magnon-induced long-range correlation functions in quantum magnets. In the ordered phases of both classical ferromagnets and antiferromagnets, the long-range correlations induced by the magnons lead to a singular wavenumber dependence of the longitudinal order-parameter susceptibility in spatial dimensions 2<d<4. We investigate the quantum analog of this singularity using a nonlinear sigma model. In a quantum antiferromagnet at $T=0$, a weaker nonanalytic behavior is obtained, which is consistent with power counting. The analogous result for a quantum ferromagnet is absent if the magnon damping is neglected. This is due to the lack of magnon number fluctuations in the quantum ferromagnetic ground state. Magnon damping due to quenched disorder restores the expected nonanalyticity. Finally, we use an effective field theory for clean, strongly interacting electron systems to calculate the magnon contribution to the density of states, the longitudinal magnetic susceptibility and the conductivity in an itinerant ferromagnet. Utilizing a loop expansion that does not assume the electron-electron interaction to be a small parameter, we obtain the leading nonanalytic corrections to the Stoner saddle-point results for these observables, as functions of the frequency and wavenumber in the hydrodynamic limit. The dissertation includes previously published and unpublished co-authored material.
3

Computational Studies of Ferromagnetism in Strongly Correlated Electronic Systems

Majidi, Muhammad Aziz 17 July 2006 (has links)
No description available.
4

Non-equilibrium strongly-correlated quantum dynamics in photonic resonator arrays

Grujic, Thomas January 2013 (has links)
Strong effective photon-photon interactions mediated by atom-photon couplings have been routinely achievable in QED setups for some time now. Recently, there have been several proposals to push the physics of interacting photons into many- body distributed architectures. The essential idea is to coherently couple together arrays of QED resonators, such that photons can hop between resonators while interacting with each other inside each resonator. These proposed structures have attracted intense theoretical attention while simultaneously inspiring experimental efforts to realise this novel regime of strongly-correlated many-body states of light. A central challenge of both theoretical and practical importance is to understand the physics of such coupled resonator arrays (CRAs) beyond equilibrium, when unavoidable (or sometimes even desired) photon loss processes are accounted for. This thesis presents several studies whose purpose can roughly be divided in two aims. The first part studies just what constitutes a valid physical and computational representation of non-equilibrium driven-dissipative CRAs. Addressing these ques- tions constitutes essential groundwork for further investigations of CRA phenomena, as numerical experiments are likely to guide and interpret near-future experimen- tal array observations. The relatively small body of existing work on CRAs out of equilibrium has often truncated their full, rich physics. It is important to establish the effects and validity of these approximations. To this end we introduce powerful numerical algorithms capable of efficiently simulating the full dynamics of CRAs, and use them to characterise the non-equilibrium steady states of arrays reached under the combined influence of dissipation and pumping. Having established the rigour necessary to realistically describe CRAs, we exam- ine two novel phenomena observable in near-future small arrays. Firstly we relate a counter-intuitive ‘super bunching’ in the statistics of photons emitted from arrays engineered to demonstrate strong effective photon-photon repulsion at the single and two-photon level, to an interplay between the underlying eigen-structure and details of the non-equilibrium operation. Secondly we characterise a dynamical phenomenon in which domains of ‘frozen’ photons remain trapped in sufficiently nonlinear arrays. Finally we present a preliminary characterisation of a previously unexplored phase diagram of arrays under coherent two-photon pumping. Com- petition between the coherence injected by the pumping, photon interactions and delocalisation processes lead to interesting new physical signatures.
5

Unbiased evaluation and development of Green's-function-based density-matrix functionals

Kamil, Ebad 06 July 2016 (has links)
No description available.
6

Sistemas quânticos de spins desordenados / Random quantum spin systems

Hoyos Neto, Jose Abel 22 November 2005 (has links)
Orientador: Eduardo Miranda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-10-31T13:24:18Z (GMT). No. of bitstreams: 1 HoyosNeto_JoseAbel_D.pdf: 1434769 bytes, checksum: 70acbb99e5c8d9636d4209b0919b56ca (MD5) Previous issue date: 2005 / Resumo: O propósito desse trabalho é estudar o papel da desordem em sistemas de spins fortemente interagentes de baixa dimensionalidade. Do ponto de vista teórico, cadeias de spin são extremamente atrativas por apresentarem uma nova física de baixas energias que vem da competição entre o ordenamento magnético e as .utuações quânticas. A introdução de desordem, onipresente no contexto experimental, é um elemento que pode desestabilizar as fases puras dando origem a uma nova física. Essa é a motivação principal do estudo de seu papel. Neste trabalho nós estudamos 4 sistemas de spins antiferromagnéticos desordenados:(i ) as escadas de spins-1/2 dos tipos 2 pernas e zig-zag, (ii ) as cadeias isotrópicas de spins SU(N), (iii ) a cadeia anisotrópica de spins SU(4), e (iv ) revisitamos a cadeia de spins-1/2. O estudo destes sistemas foi realizado aplicando generalizações da técnica do grupo de renormalização no espaço real para desordem forte. No caso do primeiro sistema, nós mostramos que as escadas de spins sempre renormalizam em cadeias de spins muito bem conhecidas. A escada de 2 pernas renormaliza para uma cadeia de spins-1/2 dimerizada antiferromagnética desordenada e, portanto, possui duas fases. Para dimerização forte ou equivalentemente desordem fraca, o sistema se encontra na fase de Haldane onde há um "gap" e a desordem é irrelevante. Para dimerização fraca ou equivalentemente desordem forte, o "gap" de Haldane se fecha e o sistema se encontra numa fase de Griffiths onde as quantidades termodinâmicas são controladas por um expoente não universal denominado expoente dinâmico z . Em contraste, a escada zig-zag renormaliza ou para uma cadeia de spins-1/2 antiferromagnética desordenada ou para uma cadeia de spins com acoplamentos ferro e antiferromagnéticos desordenada. Se a desordem e a frustração são suficientemente fracas, a escada renormaliza para a primeira cadeia, caso contrário esta pertence à mesma classe de universalidade da segunda. Além disso, relacionamos o expoente dinâmico da cadeia de spins com acoplamentos ferro e antiferromagnéticos com a distribuição de ponto fixo desses acoplamentos. Finalmente, através de argumentos simples, consideramos dizimações de acoplamentos correlacionados. Nesse caso, torna-se bem claro que a frustração é responsável pelo surgimento de acoplamentos ferromagnéticos que põem a escada na bacia de atração do ponto fixo das cadeias com acoplamentos ferro e antiferromagnéticos. Com relação à cadeia SU(N), desenvolvemos uma generalização do método do grupo de renormalização para desordem forte para uma cadeia isotrópica antiferromagnética de spins que pertencem à representações irredutíveis totalmente anti-simétricas do grupo SU(N), com N maior ou igual a 2. Conseguimos resolver as equações de fluxo analiticamente e descobrimos que essas cadeias pertencem a uma nova classe de universalidade cujos pontos fixos são de desordem infinita e, por tal motivo, nossos resultados se tornam assintoticamente exatos. Próximo a esses pontos fixos, os expoentes característicos são universais, i. e., independentes da desordem inicial da cadeia, e dependem somente do posto N do grupo de simetria. Devido às similaridades entre as regras de aglomeração de spins quando da dizimação de uma cadeia de spins com acoplamentos ferro e antiferromagnéticos e da dizimação da cadeia isotrópica de spins SU(N) no limite N ® µ , fomos capazes de calcular analiticamente, através de expansões de 1/N , a função correlação da primeira cadeia.Com relação à cadeia de spins SU(4), modificamos a generalização do método de grupo de renormalização para levar em conta a anisotropia dos acoplamentos. Conseguimos determinar o diagrama de fases através de cálculos analíticos e numéricos. Todos os pontos fixos encontrados são universais e de desordem infinita, entretanto, os expoentes característicos dependem de uma maneira não trivial da anisotropia do sistema. Por fim, revisitamos a cadeia de spins-1/2 antiferromagnética. Calculamos a amplitude da função de correlação média e a relacionamos com a amplitude da entropia de emaranhamento da mesma. Além disso, argumentamos em favor da universalidade dessas amplitudes / Abstract: The purpose of this thesis is the study of the role of quenched disorder in low-dimensional strongly interacting quantum spin systems. From the theoretical point of view, spin chains are extremely attractive due to their unconventional behavior that originates in the competition between magnetic ordering and quantum fluctuations. The introduction of disorder, ubiquitous in experimental realizations, is an element that can destabilize the clean phases giving rise to new physical behavior. That is the main motivation of this study. In this thesis, we study 4 random antiferromagnetic spin systems: (i ) the spin-1/2 two-leg and zigzag ladders, (ii ) the isotropic SU(N) spin chains, (iii ) the anisotropic SU(4) spin chain, and (iv ) we also revisit the spin-1/2 chain. For such a task, we use generalizations of the strong disorder real-space renormalization group method. Concerning the first systems, we show that the ladders are always renormalized to well-known spin chains. The two-leg ladder is renormalized to a random dimerized antiferromagnetic spin-1/2 chain, hence exhibiting two phases. For strong dimerization or equivalently weak disorder the system is in the gapful Haldane phase where disorder is irrelevant. Otherwise, the Haldane gap closes and the system is driven into a nonuniversal Griffiths phase, where the thermodynamical quantities are controled by the dynamical exponent z. In contrast, the zigzag ladder is renormalized either to a random antiferromagnetic spin-1/2 chain or to a random spin chain with both ferro- and antiferromagnetic couplings. If the randomness and frustration are sufficiently weak, the ladder is renormalized to the former chain, but otherwise it belongs to the same universality class of the latter one. In addition, we related the dynamical exponent of the ferro- and aniferromagnetic spin chain with its fixed point coupling constant distributions. Moreover, through simple qualitative arguments, we determined the phase diagram of the zigzag ladder with correlated disorder. That calculation clearly showed that frustration is responsible for the appearance of ferromagnetic couplings, which place the system in the basin of attraction of the fixed point of the ferro- and antiferromagnetic spin chains. With respect to theSU(N) spin chain, we developed a generalization of the strong-disorder renormalization group method to the case of an antiferromagnetic isotropic spin chain whose spins belong to the totally antisymmetric irreducible representations of the SU(N) group, with N greater than or equal to 2. We solved the flow equations analytically and found that such chains belong to a new universality class whose fixed point distributions are characterized by infinite disorder, rendering our results asymptotically exact. The characteristic exponents of these fixed points are universal, i. e., independent of the bare disorder, and depend only on the symmetry group rank. Due to the similarities of the spin clustering rules between the ferro- and antiferromagnetic spin chain and the isotropic SU(N) spin chain in the limit of N ® µ, we were able to analytically calcu- late, through a 1/N expansion, the mean correlation function of the former chain. In the case of the SU(4) spin chain, we modified the generalization of the renormalization group method to take into account the coupling anisotropy. We determined the phase diagram through analytical and numerical calculations. All fixed points found are universal and of infinite-randomness type. However, the characteristic exponents depend in a nontrivial fashion on the anisotropy. Finally, we revisited the antiferromagnetic spin-1/2 chain. We calculated the amplitude of the mean correlation function and related it with the amplitude of the entanglement entropy of the chain. In addition, we gave arguments in favor of the universality of these amplitudes / Doutorado / Física da Matéria Condensada / Doutor em Ciências
7

Paramètre d'ordre magnétique dans la phase de pseudogap des oxydes de cuivre supraconducteurs à haute température critique

Balédent, Victor 02 December 2010 (has links) (PDF)
Ce travail de thèse présente un nouvel ordre magnétique dans l'énigmatique phase de pseudo-gap des cuprates supraconducteurs à haute température critique. L'étude des composés YBa2Cu3O6+δ, HgBa2CuO4+δ et La1.92Sr0.08CuO4 par diffusion élastique de neutrons polarisés a permis de mettre en évidence un paramètre d'ordre magnétique en dessous d'une température comparable à celle de l'ouverture du pseudo-gap de ces systèmes. Nous avons également montré pour la première fois l'existence dans la famille HgBa2CuO4+δ de deux modes collectifs magnétiques associés à la phase de pseudo-gap. Tous ces résultats indiquent qu'à l'ouverture du pseudo-gap est associée une vraie transition de phase, avec un paramètre d'ordre magnétique et une symétrie brisée: la symétrie par renversement du temps. Il est toutefois important de noter que la symétrie de translation du réseau est préservée: on parle alors d'ordre à Q=0. Dans le système YBa2Cu3O6+δ, nous avons établi que lorsque l'on s'approche du composé parent, ou lorsque l'on introduit des impuretés telles que du Zn, les fluctuations de spin incommensurables autour du vecteur d'onde antiferromagnétique (QAF) se développent au détriment du nouvel ordre à Q=0. De manière similaire, nous avons pu mettre en évidence une interaction entre l'instabilité magnétique autour de QAF et le nouvel ordre à Q=0 dans La1.92Sr0.08CuO4. L'ensemble de ces résultats apporte une pièce maitresse au puzzle que représente toujours la supraconductivité à haute température critique, malgré 25 ans de recherche.
8

Physics of Strong Correlations in Electronic Structure and Model Calculations

Lundin, Urban January 2000 (has links)
<p>Using field theoretical methods models of strongly correlated electrons have been investigated. Application to electronic structure calculations has been made.</p><p>In this thesis an attempt is made to build a bridge between first-principle band structure calculations and a theory of systems with strongly correlated electrons, by making use of perturbation theory from the atomic limit. Analyzing the total non-relativistic Hamiltonian leads to the basic model of strongly correlated systems, the Hubbard-Anderson model. In this thesis these basic models have been tested. Conclusions on delocalization and many-body aspects have been extracted from the solutions. Specifically for the lanthanides a separation of the f-system into two subsystems has resolved the discrepancy between calculated equilibrium volumes and experimental ones. The calculations are done within the Hubbard-I approximation, where it is possible to define renormalized fermion operators. The calculation is a true many-body calculation.</p><p>Using perturbation theory a set of self consistent equations has been formulated, and solved, for praseodymium metal using the periodical Anderson model. The solution shows a self consistent decrease of the Hubbard U, and delocalization of the f-shell, when crucial parameters of the model are changed. The most salient feature of the models for strongly correlated electrons is the transfer of spectral weight from one energy region to another by adjusting pressure or other external parameters. The effects come from kinematic interactions that are important for strongly correlated systems.</p><p>Investigations of the degenerate Hubbard model applied to the metal to insulator transition has also been made. When the degeneracy is considered, the transition to the metallic state occurs at smaller Coulomb energies. </p><p>The validity of the Fermi liquid description for strongly correlated electrons has also been studied. The results show that the general behavior of the Fermi liquid state is quite robust.</p>
9

Physics of Strong Correlations in Electronic Structure and Model Calculations

Lundin, Urban January 2000 (has links)
Using field theoretical methods models of strongly correlated electrons have been investigated. Application to electronic structure calculations has been made. In this thesis an attempt is made to build a bridge between first-principle band structure calculations and a theory of systems with strongly correlated electrons, by making use of perturbation theory from the atomic limit. Analyzing the total non-relativistic Hamiltonian leads to the basic model of strongly correlated systems, the Hubbard-Anderson model. In this thesis these basic models have been tested. Conclusions on delocalization and many-body aspects have been extracted from the solutions. Specifically for the lanthanides a separation of the f-system into two subsystems has resolved the discrepancy between calculated equilibrium volumes and experimental ones. The calculations are done within the Hubbard-I approximation, where it is possible to define renormalized fermion operators. The calculation is a true many-body calculation. Using perturbation theory a set of self consistent equations has been formulated, and solved, for praseodymium metal using the periodical Anderson model. The solution shows a self consistent decrease of the Hubbard U, and delocalization of the f-shell, when crucial parameters of the model are changed. The most salient feature of the models for strongly correlated electrons is the transfer of spectral weight from one energy region to another by adjusting pressure or other external parameters. The effects come from kinematic interactions that are important for strongly correlated systems. Investigations of the degenerate Hubbard model applied to the metal to insulator transition has also been made. When the degeneracy is considered, the transition to the metallic state occurs at smaller Coulomb energies. The validity of the Fermi liquid description for strongly correlated electrons has also been studied. The results show that the general behavior of the Fermi liquid state is quite robust.
10

Aspects of transport in strongly correlated systems with gravity duals

Romero Bermudez, Aurelio January 2017 (has links)
In this thesis we consider various applications the gauge/gravity duality to study transport in strongly coupled systems. The main content is organized in three parts. In the first part we investigate the interrelation between dimensionality and strength of interactions. It is known that the dynamics of systems in Condensed Matter and General Relativity simplify for high dimensionality. Therefore, in this limit of large dimensionality, analytic results are usually possible. We study the dependence of the conductivity and the entanglement entropy on the space-time dimensionality in two different models of holographic superconductors: one dual to a quantum critical point with spontaneous symmetry breaking, and the other modelled by a charged scalar that condenses at a sufficiently low temperature in the presence of a Maxwell field. In the large dimensionality limit we obtain explicit analytical results for the conductivity at zero temperature and the entanglement entropy. Our results suggest that, as dimensionality increases, the condensate interactions become weaker. In the second part we first investigate the Drude weight and the related Mazur-Suzuki (MS) bound in a broad variety of strongly coupled field theories with a gravity dual at nonzero temperature and chemical potential. We show that the MS bound, which in the context of Condensed Matter provides information on the integrability of the theory, is saturated in Einstein-Maxwell-dilaton (EMd) and R-charged backgrounds. We then explore EMd theories with U(1) spontaneous symmetry breaking, and gravity duals of non-relativistic field theories, in which the MS bound is not saturated. Finally, we study the effect of a weak breaking of translational symmetry and we show that the MS bound sets a lower bound on the DC conductivity for a given scattering time. In the last part, we study asymptotically anti de Sitter Brans-Dicke (BD) backgrounds as effective models of metals with a varying coupling constant. We show that, for translational invariant backgrounds, the zero-frequency conductivity (dc conductivity) deviates from the universal result of EMd models. Once translational symmetry is broken, the shear viscosity to entropy ratio is always lower than the Kovtun-Son-Starinets bound, in line with other gravity backgrounds with momentum relaxation. In the BD models studied, we observed insulating like features in the dc conductivity. However, the module and argument of the optical conductivity at intermediate frequencies are not consistent with cuprates experimental results, even assuming several channel of momentum relaxation. We have also included the research carried out in the first year of the PhD as appendices. The topics studied in these appendices lie outside the main framework of this thesis.

Page generated in 0.081 seconds