• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 16
  • 10
  • 7
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 159
  • 159
  • 78
  • 72
  • 62
  • 52
  • 51
  • 50
  • 39
  • 38
  • 36
  • 31
  • 30
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Ressonância magnética nuclear e eletrônica em sistemas de elétrons fortemente correlacionados / Nuclear and electron magnetic resonance on strong correlated electron systems

Lesseux, Guilherme Gorgen, 1989- 25 May 2017 (has links)
Orientadores: Ricardo Rodrigues Urbano, Carlos Rettori / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-02T02:37:27Z (GMT). No. of bitstreams: 1 Lesseux_GuilhermeGorgen_D.pdf: 15008598 bytes, checksum: bc12c78a89f519f63d096bf87e9bde84 (MD5) Previous issue date: 2017 / Resumo: Este trabalho teve por objetivo a investigação de sistemas com elétrons fortemente correlacionados via ressonância magnética nuclear (NMR) e eletrônica (ESR). Os seguintes sistemas foram investigados: i) o isolante Kondo SmB6 dopado com impurezas de Er3+ (via ESR), ii) compostos supercondutores à base de FeAs, da família BaFe 2As2 (via NMR) e, iii) o composto férmion pesado CeRhIn5 (via NMR em altos campos magnéticos). O estudo no composto de SmB6 via ESR (9.5 GHz) dos íons de Er3+ revelou um conjunto de quatro transições em baixa temperatura com uma anisotropia que não corresponde à esperada para transições entre níveis de campo cristalino cúbico. Mostramos que o efeito Jahn-Teller (JT) dinâmico associado a vibrações anarmônicas dos íons de Er3+ nos interstícios dos octaedros de B na rede de SmB6 explica a anisotropia das transições finas em baixa temperatura e concorda com o comportamento térmico da intensidade destas linhas de ressonância. Como resultado deste trabalho, ficou então proposta uma nova interpretação dos resultados sob a luz de um efeito de rattling anarmônico dos íons de Er3+ na matriz. Nenhum efeito de isolante topológico tipo Kondo foi evidenciado nos experimentos de ESR. Para os compostos de BaFe2As2 puro e com pouca substituição química (~ 0.5%) de Mn, Co e Cu realizamos um estudo detalhado da evolução das transições de alta temperatura, estrutural e magnética, que ocorrem no diagrama de fase dessa família de supercondutores. Combinando experimentos de NMR para o 75As em altos campos magnéticos, difração de raios-X de alta resolução e calor especíco mostramos que a fase ortorrômbica é estabilizada por flutuações magnéticas via acoplamento magneto elástico e que o ajuste do ângulo entre as ligações de As-Fe-As é o parâmetro mais relevante para a supressão das temperaturas de transição estrutural e magnética. Logo, este ajuste estrutural leva a um rearranjo da ocupação dos orbitais 3d do Fe aumentando a ocupação nos orbitais planares (3dxy), condição fundamental para que a fase supercondutora se forme nestes materiais. Já para o composto de CeRhIn5 investigamos a transição quântica induzida por campo magnético que ocorre em torno de 30 T (~ 1 K) neste material via NMR do 115In em ultra altos campos magnéticos. Observamos uma alteração no knight-shift associado ao In(1), que ocupa os planos de CeIn3. Apesar de nenhum efeito evidente na forma de linha, há um knight-shift líquido de 2.3% através da transição em Bc ~ 30 T. Isto demonstra uma mudança efetiva na densidade de estados no nível de Fermi consistente com a reconstrução da superfície de Fermi em torno de 30 T previamente reportada por medidas de oscilações quânticas. O fato de não se observar alteração de forma de linha espectral em 30 T nos permitiu concluir que a estrutura magnética incomensurável do CeRhIn5 não é drasticamente alterada através da transição o que corrobora com o cenário de um ponto crítico itinerante em torno de 50 T para CeRhIn5. Esta tese demonstra a relevância da técnica de Ressonância Magnética (NMR e ESR) na investigação das propriedades físicas de sistemas com elétrons fortemente correlacionados / Abstract: The present work aimed the investigation of strongly correlated electron systems via nuclear (NMR) and electronic (ESR) magnetic resonance. The following systems were investigated: i) Er3+ doped SmB6 Kondo insulator (via ESR), ii) FeAs-based superconducting compounds, from the BaFe2As2 family (via NMR) and, iii) CeRhIn5 heavy fermion compound (via ultra-high magnetic field NMR). The study on the SmB6 via Er3+ ESR (9.5 GHz) revealed a set of four resonance transitions at low temperature which show an anisotropy that does not correspond to the expected for transitions of pure cubic crystal field levels. We have shown that the dynamic Jahn-Teller (JT) effect associated to anharmonic rattling vibrations of Er3+ ions at the interstitial of the B-octahedron in the SmB6 lattice explains the anisotropy of the narrow lines at low temperature and agrees with the thermal behavior of the intensity of these resonance lines. As a result of this work, we proposed a new interpretation of the results under the light of a anharmonic rattling of the Er3+ ions in the SmB6 lattice. No topological insulator effect was evidenced by our ESR experiments. For the BaFe2As2 undoped and slightly substituted (~ 0.5%) of Mn, Co and Cu compounds we have performed a detailed study of the evolution of the high temperature transitions, structural and magnetic, which occur in the phase diagram of this superconductor family. Combining 75As high field NMR, high resolution X-ray diffraction and specific heat experiments we have shown that the orthorhombic phase is stabilized by magnetic fluctuations via magneto-elastic coupling and that the tuning of the angle of the As-Fe-As bounds is the most relevant parameter to the suppression of the structural and magnetic transition temperatures. Thus, this structural tuning leads to a rearrangement of the occupancy of the Fe-3d orbitals increasing the occupancy of the planar orbital (3dxy), which is a fundamental condition to the formation of the superconducting phase in these materials. Finally, for the CeRhIn5 compound we have investigated the magnetic field-induced quantum transition which occurs around ~ 30 T (~ 1 K) in this material via 115In ultra-high magnetic field NMR. We observed a knight-shift alteration for the In(1), which is sited in the CeIn3 planes. There is a net knight-shift of 2.3% across the transition at Bc ~ 30 T. Although lineshape effects have not been detected, it demonstrates an effective change in the density of states at the Fermi level consistent with a Fermi surface reconstruction around 30 T previously reported by quantum oscillation measurements. We did not observe a change in the spectral lineshape across 30 T and it leads us to the conclusion that the CeRhIn5 incommensurate magnetic structure is not drastically altered across the transition which is consistent with the scenario of an itinerant quantum critical point at 50 T for CeRhIn5. This thesis demonstrates the relevance of the magnetic resonance (NMR and ESR) techniques in the investigation of physical properties of strongly correlated electron systems / Doutorado / Física / Doutor em Ciências / 140837/2013-2 / CNPQ
22

Théorie de champ moyen renormalisée appliquée aux matériaux quantiques avancés / Utilization of renormalized mean-field theory upon novel quantum materials

Tu, Wei-Lin 21 September 2018 (has links)
Cette thèse vise à utiliser le t-J Hamiltonian de la corrélation forte pour mieux comprendre la micro-fonctionnalité des scénarios de matériau condensé. Un des problèmes qui existe depuis longtemps est que pour ce type de modèle comme Hubbard Hamiltonian ou t-J Hamiltonian avec une corrélation forte ne peut pas être résolu complètement analytiquement. Par conséquent, quand on aborde ces modèles, il est important de les exploiter de façon numérique. Dans cette thése, nous utiliserons la manière qui s'appelle "Renormalized Mean-Field Theory"(RMFT) pour le t-J Hamiltonian. Grâce à M. Gutzwiller, ce que nous devons faire est simplement de chiffrer des paramètres qui incluent l'influence de la corrélation électronique et de les mettre avant chaque partie du Hamiltonian. Après ce calcul, nous calculerons l'Hamiltonian du champ moyen de manière standard. Ceci sera notre façon principale pour aborder des questions physiques. Ensuite, nous l'appliquerons sur deux systèmes. Le premier est la mystique de supraconducteur à haute température. Après sa découverte il y a 30 ans, on ne peut pas encore définir une théorie pour expliquer sa micromécanique de manière appropriée. Cependant, avec des équipements avancés, on peut faire des expériences correctement et obtenir des résultats exacts. Ces preuves nous facilitent l'élaboration d'une bonne théorie, même s'il est aussi très difficile d'inclure tous les phénomènes ensemble. Nous avons obtenu des résultats et par rapport aux expériences, ils sont similaires qualitativement. Nous montrerons les détails dans le texte. Le deuxième système qui nous intéresse est le mouvement d'électron dans un champ magnétique fort. Le papillon d'Hofstadter et son modèle, l'Hamiltonian de Harper-Hofstadter ont obtenu un grand succès à décrire la mécanique d'électrons libres aux treillis. Donc il est ainsi intéressant de se demander ce qu'il se passera si nous remplaçons des électrons libres avec ceux qui s'interagissent. D'ailleurs, t-J Hamiltonian s'utilise comme bon modèle à le découvrir. Nous allons comparer nos résultats avec ceux de la diagonalisation exacte. Nous proposerons des découvertes intéressantes qui désormais seront réalisées par l'expérience d'atome froide. / This thesis is aiming in utilizing the strongly correlated t-J Hamiltonian for better understanding the microscopic pictures of certain condensed matter scenario. One of the long existing issues in the Hubbard model and its extreme version, t-J model, lies in the fact that there is not an analytical way of solving them. Therefore, when dealing with these models, numerical approaches become very crucial. In this thesis, we will present one of the methods called renormalized mean-field theory (RMFT) and exploit it upon the t-J model. Thanks to the concept proposed by Gutzwiller, all we have to do is to try to include the correlation of electrons, which is mainly the most difficult part, with several renormalization factors. After obtaining the correct form of these factors, we can apply the routine mean-field theory in solving for the Hamiltonian, which is the principle methodology throughout this thesis. Next, the physical systems that we are interested in consist of two parts. The mystery of High-Tc superconductivity comes first. After 30 years of its discovery, people still cannot settle down a complete microscopic theory in describing this exotic phenomenon. However, with more and more experimental equipment with higher accuracy nowadays, lots of behavior of copperoxide superconductor (also known as cuprate) have been revealed. Those discoveries can definitely help us better understand its microscopic mechanism. Therefore, from the theoretical side, to compare the calculated data with experiments leads us to know whether our theory is on the right track or not. We have produced tons of data and made a decent comparison which will be shown in the main text. The second system we are curious about is the mechanism of electrons under magnetic field. The Hofstadter butterfly along with its Hamiltonian, the Harper-Hofstadter model has achieved great success in describing free electrons' movement with lattice present. Thus, it will be also interesting to ask the question: what will happen if the electrons are correlated. Our RMFT for t-J Hamiltonian, by adding an additional phase in the hopping term, happens to serve as a great preliminary model for answering this question. We will compare the results of ours with our collaborators, who solved this model by a different approach, the exact diagonalization(ED). Together with our calculations, we proposed several discoveries which might be realized by the cold atom experiments in the future.
23

Epitaxial Strain Effect On The Physical Properties Of Layered Ruthenate And Iridate Thin Films

January 2014 (has links)
Transition metal oxides have attracted widespread attention due to their broad range of fascinating exotic phenomena such as multiferroicity, superconductivity, colossal magnetoresistance and metal-to-insulator transition. Due to the interplay between spin, charge, lattice and orbital degrees of freedom of strongly correlated d electrons, these physical properties are extremely sensitive to the external perturbations such as magnetic field, charge carrier doping and pressure, which provide a unique chance in search for novel exotic quantum states. Ruthenate systems are a typical strongly correlated system, with rich ordered states and their properties are extremely sensitive to external stimuli. Recently, the experimental observation of spin-orbit coupling induced Mott insulator in Sr2IrO4 as well as the theoretical prediction of topological insulating state in other iridates, have attracted tremendous interest in the physics of strong correlation and spin-orbit coupling in 4d/5d compounds. We observe an itinerant ferromagnetic ground state of Ca2RuO4 film in stark contrast to the Mott-insulating state in bulk Ca2RuO4. We have also established the epitaxial strain effect on the transport and magnetic properties for the (Ca,Sr)2RuO4 thin films. For Sr2IrO4 thin films, we will show that the Jeff = 1/2 moment orientation can be modulated by epitaxial strain. In addition, we discovered novel Ba7Ir3O13+x thin films which exhibit colossal permittivity. / acase@tulane.edu
24

Phase transitions in high-temperature superconductors

Lidmar, Jack January 1998 (has links)
Thermal fluctuations and disorder strongly influence the behaviour of hightemperature superconductors. In particular the vortices play a key role in determining their properties. In this thesis the main focus lies on phase transitions, both in ultra-thin films and in three-dimensional systems, which are driven by vortex fluctuations. The last paper concerns the influence of antiferromagnetism on superconductivity in a simple model. A brief review of these topics is given in the introductory part. The main results are: The phase transition in ultra-thin superconducting/superfluid films is studied within the two-dimensional Coulomb gas model, which is known to have a Berezinskii-Kosterlitz-Thouless transition at low vortex densities. We construct the phase diagram from grand canonical Monte Carlo simulations on a continuum, without any restrictions on the vortex density. The dynamical universality classes for vortices in superconductors in zero magnetic field are studied by means of Monte Carlo simulations, with particular attention to the role of screening of the vortex interaction. We construct a formula for the k = 0 helicity modulus directly in terms of the vortex line fluctuations, which can serve as a useful way to detect superconducting coherence in model calculations. A method for simulating vortex lines on a continuum is developed, and used to study the melting of the Abrikosov vortex lattice. We study the critical dynamics for vortices in the presence of columnar defects. The linear resistivity and current-voltage characteristics are calculated in Monte Carlo simulations, and the critical behaviour extracted using finite size scaling. We reconsider the scaling properties as the magnetic field is tilted away from the direction of the columns. The influence of antiferromagnetic correlations on the superconducting properties is studied in a simplified lattice fermion model for superconductivity in the presence of an antiferromagnetic background. We find that the superconducting critical temperature is enhanced by antiferromagnetic order, and that a gap with dx2-y2-wave symmetry is the most stable. / QC 20100512
25

Ground State Studies Of Strongly Correlated 2D Systems

Pathak, Sandeep 07 1900 (has links) (PDF)
The quest for obtaining higher Tc superconductivity led to the discovery of cuprates about 20 years ago. Since then, they continue to puzzle the scientific community with their bizarre properties like non-BCS superconductivity, pseudo gap, Fermi arcs, linear T resistivity etc. Since these materials show unusually high Tc, a novel mechanism is at play and strong correlations are believed to play an important role. The theme of this thesis work is to study physics of such strongly correlated systems in two dimensions at T = 0 along with development of new theoretical tools necessary for the study. The focus of the thesis is on the ground state studies of strongly correlated models like t-J and Hubbard models using variational Monte Carlo (VMC) and renormalized mean field theory (RMFT). The general method is to propose a variational wave function, motivated by the physics ideas, to be a candidate ground state of the system. Methods to efficiently evaluate the ground state energy and minimizing it with respect to the variational parameters are developed in this work. Antiferromagnetism-superconductivity competition and electron-hole asymmetry in the extended t-J model is investigated. The main result of this work is that increasing the magnitude of the next neighbor hopping (t') on hole doped side strengthen superconductivity while it stabilizes antiferromagnetism on the electron doped side. It is also shown that it is possible to characterize the T = 0 phase diagram with just one parameter called as Fermi Surface Convexity Parameter (FSCP). Next, the possibility of phase separation in the t-J model on a square lattice is investigated using local RMFT technique. It is found that for certain doping, the system phase separates into regions with antiferromagnetic and superconducting orders. Next, the role played by crystalline anisotropy of orthorhombic YBCO cuprates on their properties is examined using anisotropic tx-ty-J model and this ground state study suggests that the anisotropies seen in their properties are plausible solely due to the crystalline anisotropy. A new general method to study strongly correlated systems with singlet ground states is developed and tested in this thesis work. The last part of the thesis explores the possibility of high Tc superconductivity in graphene which is a intermediate coupling resonating valence bond (RVB) system. It is found that undoped graphene is not a superconductor, consistent with the experiments. On doping, the ground state of graphene is found to be a superconductor with “d+id” symmetry whose strength shows a dome as a function of doping which is reminiscent of RVB physics.
26

Interplay of charge density modulations and superconductivity

Sadowski, Jason Wayne 15 April 2011
Recent studies of the transition metal dichalcogenide niobium diselenide have led to debate in the scientific community regarding the mechanism of the charge density wave (CDW) instability in this material. Moreover, whether or not CDW boosts or competes with superconductivity (SC) is still unknown, as there are experimental measurements which supports both scenarios. Motivated by these measurements we study the interplay of charge density modulations and superconductivity in the context of the Bogoliubov de-Gennes (BdG) equations formulated on a tight-binding lattice. As the BdG equations require large numerical demand, software which utilizes parallel algorithms have been developed to solve these equations directly and numerically. Calculations were performed on a large-scale Beowulf-class PC cluster at the University of Saskatchewan.<p> We first study the effects of inhomogeneity on nanoscale superconductors due to the presence of surfaces or a single impurity deposited in the sample. It is illustrated that CDW can coexist with SC in a finite-size s-wave superconductor. Our calculations show that a weak impurity potential can lead to significant suppression of the superconducting order parameter, more so than a strong impurity. In particular, in a nanoscale d-wave superconductor with strong electron-phonon coupling, the scattering by a weakly attractive impurity can nearly kill superconductivity over the entire sample.<p> Calculations for periodic systems also show that CDW can coexist with s-wave superconductivity. In order to identify the cause of the CDW instability, the BdG equations have been generalized to include the next-nearest neighbour hopping integral. It is shown that the CDW state is strongly affected by the magnitude of the next-nearest neighbour hopping, while superconductivity is not. The difference between the CDW and SC states is a result of the anomalous, or off-diagonal, coupling between particle and hole components of quasiparticle excitations. The Fermi surface is changed as next-nearest neighbour hopping is varied; in particular, the perfect nesting and coincidence of the nesting vectors and the vectors connecting van Hove singularities (vHs) for zero next-nearest neighbor hopping is destroyed, and vHs move away from the Fermi energy. It is found that within our one-band tight-binding model with isotropic s-wave superconductivity, CDW and SC can coexist only for vanishing nearest neighbor hopping and for non-zero hopping, the homogeneous SC state always has the lowest ground-state energy. Furthermore, we find in our model that as the magnitude of the next-nearest neighbor hopping parameter increases, the main cause of the divergence in the dielectric response accompanying the CDW transition changes from nesting to the vHs mechanism proposed by Rice and Scott. It is still an open question as to the origin of CDW and its interplay with SC in multiple-band, anisotropic superconductors such as niobium diselenide, for which fundamental theory is lacking. The work presented in this thesis demonstrates the possible coexistence of charge density waves and superconductivity, and provides insight into the mechanism of electronic instability causing charge density waves.
27

Emergent Low Temperature Phases in Strongly Correlated Multi-orbital and Cold Atom Systems

Puetter, Christoph Minol 26 March 2012 (has links)
This thesis considers various strongly correlated quantum phases in solid state and cold atom spin systems. In the first part we focus on phases emerging in multi-orbital materials. We study even-parity spin-triplet superconductivity originating from Hund's coupling between t2g orbitals and investigate the effect of spin-orbit interaction on spin-triplet and spin-singlet pairing. Various aspects of the pairing state are discussed against the backdrop of the spin-triplet superconductor Sr2RuO4. Motivated by the remarkable phenomena observed in the bilayer compound Sr3Ru2O7, which point to the formation of an electronic nematic phase in the presence of critical fluctuations, we investigate how such a broken symmetry state emerges from electronic interactions. Since the broken x-y symmetry is revealed experimentally by applying a small in-plane magnetic field component, we examine nematic phases in a bilayer system and the role of the in-plane magnetic field using a phenomenological approach. In addition, we propose a microscopic mechanism for nematic phase formation specific to Sr3Ru2O7. The model is based on a realistic multi-orbital band structure and local and nearest neighbour interactions. Considering all t2g-orbital derived bands on an equal footing, we find a nematic quantum critical point and a nearby meta-nematic transition in the phase diagram. This finding harbours important implications for the phenomena observed in Sr3Ru2O7. The second part is devoted to the study of the anisotropic bilinear biquadratic spin-1 Heisenberg model, where the existence of an unusual direct phase transition between a spin-nematic phase and a dimerized valence bond solid phase in the quasi-1D limit was conjectured based on Quantum Monte Carlo simulations. We establish the quasi-1D phase diagram using a large-N Schwinger boson approach and show that the phase transition is largely conventional except possibly at two particular points. We further discuss how to realize and to detect such phases in an optical lattice.
28

Emergent Low Temperature Phases in Strongly Correlated Multi-orbital and Cold Atom Systems

Puetter, Christoph Minol 26 March 2012 (has links)
This thesis considers various strongly correlated quantum phases in solid state and cold atom spin systems. In the first part we focus on phases emerging in multi-orbital materials. We study even-parity spin-triplet superconductivity originating from Hund's coupling between t2g orbitals and investigate the effect of spin-orbit interaction on spin-triplet and spin-singlet pairing. Various aspects of the pairing state are discussed against the backdrop of the spin-triplet superconductor Sr2RuO4. Motivated by the remarkable phenomena observed in the bilayer compound Sr3Ru2O7, which point to the formation of an electronic nematic phase in the presence of critical fluctuations, we investigate how such a broken symmetry state emerges from electronic interactions. Since the broken x-y symmetry is revealed experimentally by applying a small in-plane magnetic field component, we examine nematic phases in a bilayer system and the role of the in-plane magnetic field using a phenomenological approach. In addition, we propose a microscopic mechanism for nematic phase formation specific to Sr3Ru2O7. The model is based on a realistic multi-orbital band structure and local and nearest neighbour interactions. Considering all t2g-orbital derived bands on an equal footing, we find a nematic quantum critical point and a nearby meta-nematic transition in the phase diagram. This finding harbours important implications for the phenomena observed in Sr3Ru2O7. The second part is devoted to the study of the anisotropic bilinear biquadratic spin-1 Heisenberg model, where the existence of an unusual direct phase transition between a spin-nematic phase and a dimerized valence bond solid phase in the quasi-1D limit was conjectured based on Quantum Monte Carlo simulations. We establish the quasi-1D phase diagram using a large-N Schwinger boson approach and show that the phase transition is largely conventional except possibly at two particular points. We further discuss how to realize and to detect such phases in an optical lattice.
29

Interplay of charge density modulations and superconductivity

Sadowski, Jason Wayne 15 April 2011 (has links)
Recent studies of the transition metal dichalcogenide niobium diselenide have led to debate in the scientific community regarding the mechanism of the charge density wave (CDW) instability in this material. Moreover, whether or not CDW boosts or competes with superconductivity (SC) is still unknown, as there are experimental measurements which supports both scenarios. Motivated by these measurements we study the interplay of charge density modulations and superconductivity in the context of the Bogoliubov de-Gennes (BdG) equations formulated on a tight-binding lattice. As the BdG equations require large numerical demand, software which utilizes parallel algorithms have been developed to solve these equations directly and numerically. Calculations were performed on a large-scale Beowulf-class PC cluster at the University of Saskatchewan.<p> We first study the effects of inhomogeneity on nanoscale superconductors due to the presence of surfaces or a single impurity deposited in the sample. It is illustrated that CDW can coexist with SC in a finite-size s-wave superconductor. Our calculations show that a weak impurity potential can lead to significant suppression of the superconducting order parameter, more so than a strong impurity. In particular, in a nanoscale d-wave superconductor with strong electron-phonon coupling, the scattering by a weakly attractive impurity can nearly kill superconductivity over the entire sample.<p> Calculations for periodic systems also show that CDW can coexist with s-wave superconductivity. In order to identify the cause of the CDW instability, the BdG equations have been generalized to include the next-nearest neighbour hopping integral. It is shown that the CDW state is strongly affected by the magnitude of the next-nearest neighbour hopping, while superconductivity is not. The difference between the CDW and SC states is a result of the anomalous, or off-diagonal, coupling between particle and hole components of quasiparticle excitations. The Fermi surface is changed as next-nearest neighbour hopping is varied; in particular, the perfect nesting and coincidence of the nesting vectors and the vectors connecting van Hove singularities (vHs) for zero next-nearest neighbor hopping is destroyed, and vHs move away from the Fermi energy. It is found that within our one-band tight-binding model with isotropic s-wave superconductivity, CDW and SC can coexist only for vanishing nearest neighbor hopping and for non-zero hopping, the homogeneous SC state always has the lowest ground-state energy. Furthermore, we find in our model that as the magnitude of the next-nearest neighbor hopping parameter increases, the main cause of the divergence in the dielectric response accompanying the CDW transition changes from nesting to the vHs mechanism proposed by Rice and Scott. It is still an open question as to the origin of CDW and its interplay with SC in multiple-band, anisotropic superconductors such as niobium diselenide, for which fundamental theory is lacking. The work presented in this thesis demonstrates the possible coexistence of charge density waves and superconductivity, and provides insight into the mechanism of electronic instability causing charge density waves.
30

The role of inter-plane interaction in the electronic structure of high Tc cuprates

Kim, Timur K. 10 April 2004 (has links) (PDF)
This thesis represents a systematic study of electronic structure of the modulation-free Pb-doped Bi2212 superconducting cuprates with respect to interlayer coupling done by using the angle-resolved photoemission spectroscopy (ARPES), which is a leading technique in the experimental investigation of the single particle excitations in solids. The results presented in this work indicate a very different origin for the observed complex spectra lineshape. Specifically, the peak-dip-hump lineshape can be easily understood in terms of the superposition of spectral features due to bilayer band splitting, namely the splitting of the CuO2 plane derived electronic structure in bonding and antibonding bands due to the interlayer coupling of CuO2 bilayer blocks within the unit cell of Bi2212. By performing experiments at synchrotron beamlines where the energy of the incoming photons can be tuned over a very broad range, the detailed matrix elements energy dependence for both bonding and antibonding bands was determined. This gave the opportunity to study the electronic properties these two bands separately. For the first time, it was proved that the superconducting gap has the same value and symmetry for both bands. Furthermore, having recognized and sorted out the bilayer splitting effects, it became possible to identify more subtle effects hidden in the details of the ARPES lineshapes. On underdoped samples an &amp;quot;intrinsic&amp;quot; peak-dip-hump structure due to the interaction between electrons and a bosonic mode was observed. Studying the doping, temperature, and momentum dependence of the photoemission spectra it was established that: the mode has a characteristic energy of 38-40 meV and causes strong renormalization of the electronic structure only in the superconducting state; the electron-mode coupling is maximal around the (?à,0) point in momentum space and is strongly doping dependent (being greatly enhanced in the underdoped regime). From the above, it was concluded that the bosonic mode must correspond to the sharp magnetic resonance mode observed in inelastic neutron scattering experiments, and that this coupling is relevant to superconductivity and the pairing mechanism in the cuprates.

Page generated in 0.0689 seconds