• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Computational Procedure for the Analytic Continuation of Eliashberg Equations

Johansson, Joakim, Lauren, Fredrik January 2014 (has links)
The superconducting order parameter and the mass renormalization function can be solved either at discrete frequencies along the imaginary axis, or as a function of continuous real frequencies. The latter is done with a method called analytic continuation. The analytic continuation can conveniently be done by approximating a power series to the functions, the Padè approximation. Studied in this project is the difference between the Padè approximation, and a formally exact analytic continuation of the functions. As it turns out, the Padè approximant is applicable to calculate the superconducting order parameter at temperatures sufficiently below the critical temperature. However close to the critical temperature the approximation fails, while the solution presented in this report remains reliable.
2

Unconventional Superconductivity Mediated by the Higgs Amplitude Mode in Itinerant Ferromagnets:

Forestano, Roy Thomas January 2021 (has links)
Thesis advisor: Kevin Bedell / Over 20 years ago, Blagoev et. al. predicted an s-wave pairing instability in a ferromagnetic Fermi liquid (FFL) as a consequence of spin fluctuations [5]. Shortly after, it was discovered that, when magnetic interactions in the ferromagnetic superconductor UGe2 dominate, quasiparticles with parallel spin form pairs in odd-parity orbitals; i.e., a form of spin-triplet p-wave superconductivity emerges, in contrast to Blagoev et. al.'s prediction [6]. In this work, we return to this issue by introducing the effects of a gapped amplitude (or "Higgs") mode on the vertex corrections and subsequent form of Cooper pairing. As the Higgs mode only propagates in the presence of a finite spin current, such an amplitude mode results in strong momentum-dependence in the many-body vertex. This results in the emergence of an unconventional form of superconductivity mediated by unconventional low-energy modes in a weak itinerant ferromagnet. / Thesis (BS) — Boston College, 2021. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Scholar of the College. / Discipline: Physics. / Discipline: Mathematics.
3

Van Hove Singularities in BCS Theory

Goicochea, Armando Gama 08 1900 (has links)
<p> The influence of a logarithmically dependent (van Hove singularity) electronic density of states is studied in the weak-coupling limit. Through analytic and numerical analysis it is found that the model can give rise to temperatures in the 100 K range, and that universal BCS ratios such as 2Δ/kBTC and ΔC/γTC do not change essentially from their constant BCS values. The consequences of this model on the calculation of the isotope effect and specific heat are discussed in detail and compared to recent experimental results.</p> / Thesis / Master of Science (MSc)
4

Interplay of charge density modulations and superconductivity

Sadowski, Jason Wayne 15 April 2011
Recent studies of the transition metal dichalcogenide niobium diselenide have led to debate in the scientific community regarding the mechanism of the charge density wave (CDW) instability in this material. Moreover, whether or not CDW boosts or competes with superconductivity (SC) is still unknown, as there are experimental measurements which supports both scenarios. Motivated by these measurements we study the interplay of charge density modulations and superconductivity in the context of the Bogoliubov de-Gennes (BdG) equations formulated on a tight-binding lattice. As the BdG equations require large numerical demand, software which utilizes parallel algorithms have been developed to solve these equations directly and numerically. Calculations were performed on a large-scale Beowulf-class PC cluster at the University of Saskatchewan.<p> We first study the effects of inhomogeneity on nanoscale superconductors due to the presence of surfaces or a single impurity deposited in the sample. It is illustrated that CDW can coexist with SC in a finite-size s-wave superconductor. Our calculations show that a weak impurity potential can lead to significant suppression of the superconducting order parameter, more so than a strong impurity. In particular, in a nanoscale d-wave superconductor with strong electron-phonon coupling, the scattering by a weakly attractive impurity can nearly kill superconductivity over the entire sample.<p> Calculations for periodic systems also show that CDW can coexist with s-wave superconductivity. In order to identify the cause of the CDW instability, the BdG equations have been generalized to include the next-nearest neighbour hopping integral. It is shown that the CDW state is strongly affected by the magnitude of the next-nearest neighbour hopping, while superconductivity is not. The difference between the CDW and SC states is a result of the anomalous, or off-diagonal, coupling between particle and hole components of quasiparticle excitations. The Fermi surface is changed as next-nearest neighbour hopping is varied; in particular, the perfect nesting and coincidence of the nesting vectors and the vectors connecting van Hove singularities (vHs) for zero next-nearest neighbor hopping is destroyed, and vHs move away from the Fermi energy. It is found that within our one-band tight-binding model with isotropic s-wave superconductivity, CDW and SC can coexist only for vanishing nearest neighbor hopping and for non-zero hopping, the homogeneous SC state always has the lowest ground-state energy. Furthermore, we find in our model that as the magnitude of the next-nearest neighbor hopping parameter increases, the main cause of the divergence in the dielectric response accompanying the CDW transition changes from nesting to the vHs mechanism proposed by Rice and Scott. It is still an open question as to the origin of CDW and its interplay with SC in multiple-band, anisotropic superconductors such as niobium diselenide, for which fundamental theory is lacking. The work presented in this thesis demonstrates the possible coexistence of charge density waves and superconductivity, and provides insight into the mechanism of electronic instability causing charge density waves.
5

Interplay of charge density modulations and superconductivity

Sadowski, Jason Wayne 15 April 2011 (has links)
Recent studies of the transition metal dichalcogenide niobium diselenide have led to debate in the scientific community regarding the mechanism of the charge density wave (CDW) instability in this material. Moreover, whether or not CDW boosts or competes with superconductivity (SC) is still unknown, as there are experimental measurements which supports both scenarios. Motivated by these measurements we study the interplay of charge density modulations and superconductivity in the context of the Bogoliubov de-Gennes (BdG) equations formulated on a tight-binding lattice. As the BdG equations require large numerical demand, software which utilizes parallel algorithms have been developed to solve these equations directly and numerically. Calculations were performed on a large-scale Beowulf-class PC cluster at the University of Saskatchewan.<p> We first study the effects of inhomogeneity on nanoscale superconductors due to the presence of surfaces or a single impurity deposited in the sample. It is illustrated that CDW can coexist with SC in a finite-size s-wave superconductor. Our calculations show that a weak impurity potential can lead to significant suppression of the superconducting order parameter, more so than a strong impurity. In particular, in a nanoscale d-wave superconductor with strong electron-phonon coupling, the scattering by a weakly attractive impurity can nearly kill superconductivity over the entire sample.<p> Calculations for periodic systems also show that CDW can coexist with s-wave superconductivity. In order to identify the cause of the CDW instability, the BdG equations have been generalized to include the next-nearest neighbour hopping integral. It is shown that the CDW state is strongly affected by the magnitude of the next-nearest neighbour hopping, while superconductivity is not. The difference between the CDW and SC states is a result of the anomalous, or off-diagonal, coupling between particle and hole components of quasiparticle excitations. The Fermi surface is changed as next-nearest neighbour hopping is varied; in particular, the perfect nesting and coincidence of the nesting vectors and the vectors connecting van Hove singularities (vHs) for zero next-nearest neighbor hopping is destroyed, and vHs move away from the Fermi energy. It is found that within our one-band tight-binding model with isotropic s-wave superconductivity, CDW and SC can coexist only for vanishing nearest neighbor hopping and for non-zero hopping, the homogeneous SC state always has the lowest ground-state energy. Furthermore, we find in our model that as the magnitude of the next-nearest neighbor hopping parameter increases, the main cause of the divergence in the dielectric response accompanying the CDW transition changes from nesting to the vHs mechanism proposed by Rice and Scott. It is still an open question as to the origin of CDW and its interplay with SC in multiple-band, anisotropic superconductors such as niobium diselenide, for which fundamental theory is lacking. The work presented in this thesis demonstrates the possible coexistence of charge density waves and superconductivity, and provides insight into the mechanism of electronic instability causing charge density waves.
6

Spin-polarized transport in superconducting and ferromagnetic nanostructures

Taddei, Fabio January 2000 (has links)
No description available.
7

Applications of the coupled cluster method to pairing problems

Snape, Christopher January 2010 (has links)
The phenomenon of pairing in atomic and nuclear many-body systems gives rise to a great number of different physical properties of matter, from areas as seemingly diverse as the shape of stable nuclei to superconductivity in metals and superfluidity in neutron stars. With the experimental realisation of the long sought BCS-BEC crossover observed in trapped atomic gases - where it is possible to fine tune the s-wave scattering length a of a many-fermion system between a dilute, correlated BCS-like superfluid of Cooper pairs and a densely packed BEC of composite bosons - pairing problems in atomic physics have found renewed interest in recent years. Given the high precision techniques involved in producing these trapped gas condensates, we would like to employ a suitably accurate many-body method to study such systems, preferably one which goes beyond the simple mean-field picture.The Coupled Cluster Method (CCM) is a widely applied and highly successful ab initio method in the realm of quantum many-body physics and quantum chemistry, known to be capable of producing extremely accurate results for a wide variety of different many-body systems. It has not found many applications in pairing problems however, at least not in a general sense. Our aim, therefore, is to study various models of pairing using a variety of CCM techniques - we are interested in studying the generic features of pairing problems and in particular, we are especially interested in probing the collective modes of a system which exhibits the BCS-BEC crossover, in either the BCS or BEC limit. The CCM seems a rather good candidate for the job, given the high precision results it can produce.
8

Untersuchung von neuartigen Supraleitern mit Hilfe der THz-Spektroskopie

Fischer, Theo 27 May 2013 (has links) (PDF)
In dieser Arbeit werden niederfrequente optische Messungen an vier neuartigen Supraleitern vorgestellt. Im Bereich von 100 GHz bis 3 THz zeigen die vier untersuchten Systeme – LuNi2B2C, Ba(Fe0,9Co0,1)2As2, T’-Pr2CuO4 und Si:Ga – ein sehr unterschiedliches Verhalten. Die beiden erst genannten Supraleiter sind Mehrbandsupraleiter, bei denen die Cooper-Paarkopplung unterschiedlich für verschiedene Fermiflächen ist. T’-Pr2CuO4 ist ein undotierter Kupratsupraleiter, der nach bisheriger Lehrmeinung nicht existieren dürfte. Mit THz-Spektroskopie konnte erstmals die Bildung einer Meißner-Phase in T’-Pr2CuO4 mit optischen Methoden beobachtet werden. Eine gewisse Sonderstellung nimmt Si:Ga als amorpher Supraleiter ein. Si:Ga wird durch Ionenimplantation von Gallium in einen Siliziumwafer hergestellt. Es besteht die Hoffnung, mit Si:Ga halb- und supraleitende Logikblöcke in großem Maßstab auf einem Chip vereinen zu können, da die Ionenimplantation mit den Produktionsprozessen der Halbleiterindustrie kompatibel ist.
9

Condensation phenomena in interacting Fermi and Bose gases

Männel, Michael 02 December 2011 (has links) (PDF)
In dieser Dissertation werden das Anregungsspektrum und das Phasendiagramm wechselwirkender Fermi- und Bosegase untersucht. Zu diesem Zweck wird eine neuartige renormierte Kadanoff-Martin-Näherung vorgestellt, die Selbstwechselwirkung von Teilchen vermeidet und somit eine einheitliche Beschreibung sowohl der normalen als auch der kondensierten Phase ermöglicht. Für Fermionen findet man den BCS-Zustand, benannt nach Bardeen, Cooper und Schrieffer, welcher entscheidend ist für das Phänomen der Supraleitung. Charakteristisch für diesen Zustand ist eine Energielücke im Anregungsspektrum an der Fermi-Energie. Weiterhin tritt für Bosonen eine Bose-Einstein-Kondensation (BEC) auf, bei der das Anregungsspektrum für kleine Impulse linear ist. Letzteres führt zum Phänomen der Suprafluidität. Über die bereits bekannten Phänomene hinaus findet man eine dem BCS-Zustand ähnliche Kondensation von Zweiteilchenbindungszuständen, sowohl für Fermionen als auch für Bosonen. Für Fermionen tritt ein Übergang zwischen der Kondensation von Bindungszuständen und dem BCS-Zustand auf, der sogenannte BEC-BCS-Übergang. Die Untersuchung der Zustandsgleichung zeigt, dass im Gegensatz zu Fermi-Gasen und Bose-Gasen mit abstoßender Wechselwirkung Bose-Gase mit anziehender Wechselwirkung zu einer Flüssigkeit kondensieren oder sich verfestigen, bevor es zur Kondensation von Bindungszuständen oder zur Bose-Einstein-Kondensation kommt. Daher können diese Phänomene voraussichtlich nicht in der Gasphase beobachtet werden. Zusammenfassend lässt sich sagen, dass das vorgestellte Näherungsverfahren sehr gut geeignet ist, die erwähnten Phänomene im Zusammenhang mit der Bose-Einstein-Kondensation zu beschreiben.
10

Condensation phenomena in interacting Fermi and Bose gases

Männel, Michael 14 October 2011 (has links)
In dieser Dissertation werden das Anregungsspektrum und das Phasendiagramm wechselwirkender Fermi- und Bosegase untersucht. Zu diesem Zweck wird eine neuartige renormierte Kadanoff-Martin-Näherung vorgestellt, die Selbstwechselwirkung von Teilchen vermeidet und somit eine einheitliche Beschreibung sowohl der normalen als auch der kondensierten Phase ermöglicht. Für Fermionen findet man den BCS-Zustand, benannt nach Bardeen, Cooper und Schrieffer, welcher entscheidend ist für das Phänomen der Supraleitung. Charakteristisch für diesen Zustand ist eine Energielücke im Anregungsspektrum an der Fermi-Energie. Weiterhin tritt für Bosonen eine Bose-Einstein-Kondensation (BEC) auf, bei der das Anregungsspektrum für kleine Impulse linear ist. Letzteres führt zum Phänomen der Suprafluidität. Über die bereits bekannten Phänomene hinaus findet man eine dem BCS-Zustand ähnliche Kondensation von Zweiteilchenbindungszuständen, sowohl für Fermionen als auch für Bosonen. Für Fermionen tritt ein Übergang zwischen der Kondensation von Bindungszuständen und dem BCS-Zustand auf, der sogenannte BEC-BCS-Übergang. Die Untersuchung der Zustandsgleichung zeigt, dass im Gegensatz zu Fermi-Gasen und Bose-Gasen mit abstoßender Wechselwirkung Bose-Gase mit anziehender Wechselwirkung zu einer Flüssigkeit kondensieren oder sich verfestigen, bevor es zur Kondensation von Bindungszuständen oder zur Bose-Einstein-Kondensation kommt. Daher können diese Phänomene voraussichtlich nicht in der Gasphase beobachtet werden. Zusammenfassend lässt sich sagen, dass das vorgestellte Näherungsverfahren sehr gut geeignet ist, die erwähnten Phänomene im Zusammenhang mit der Bose-Einstein-Kondensation zu beschreiben.

Page generated in 0.0427 seconds