• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchung von neuartigen Supraleitern mit Hilfe der THz-Spektroskopie

Fischer, Theo 27 May 2013 (has links) (PDF)
In dieser Arbeit werden niederfrequente optische Messungen an vier neuartigen Supraleitern vorgestellt. Im Bereich von 100 GHz bis 3 THz zeigen die vier untersuchten Systeme – LuNi2B2C, Ba(Fe0,9Co0,1)2As2, T’-Pr2CuO4 und Si:Ga – ein sehr unterschiedliches Verhalten. Die beiden erst genannten Supraleiter sind Mehrbandsupraleiter, bei denen die Cooper-Paarkopplung unterschiedlich für verschiedene Fermiflächen ist. T’-Pr2CuO4 ist ein undotierter Kupratsupraleiter, der nach bisheriger Lehrmeinung nicht existieren dürfte. Mit THz-Spektroskopie konnte erstmals die Bildung einer Meißner-Phase in T’-Pr2CuO4 mit optischen Methoden beobachtet werden. Eine gewisse Sonderstellung nimmt Si:Ga als amorpher Supraleiter ein. Si:Ga wird durch Ionenimplantation von Gallium in einen Siliziumwafer hergestellt. Es besteht die Hoffnung, mit Si:Ga halb- und supraleitende Logikblöcke in großem Maßstab auf einem Chip vereinen zu können, da die Ionenimplantation mit den Produktionsprozessen der Halbleiterindustrie kompatibel ist.
2

Condensation phenomena in interacting Fermi and Bose gases

Männel, Michael 02 December 2011 (has links) (PDF)
In dieser Dissertation werden das Anregungsspektrum und das Phasendiagramm wechselwirkender Fermi- und Bosegase untersucht. Zu diesem Zweck wird eine neuartige renormierte Kadanoff-Martin-Näherung vorgestellt, die Selbstwechselwirkung von Teilchen vermeidet und somit eine einheitliche Beschreibung sowohl der normalen als auch der kondensierten Phase ermöglicht. Für Fermionen findet man den BCS-Zustand, benannt nach Bardeen, Cooper und Schrieffer, welcher entscheidend ist für das Phänomen der Supraleitung. Charakteristisch für diesen Zustand ist eine Energielücke im Anregungsspektrum an der Fermi-Energie. Weiterhin tritt für Bosonen eine Bose-Einstein-Kondensation (BEC) auf, bei der das Anregungsspektrum für kleine Impulse linear ist. Letzteres führt zum Phänomen der Suprafluidität. Über die bereits bekannten Phänomene hinaus findet man eine dem BCS-Zustand ähnliche Kondensation von Zweiteilchenbindungszuständen, sowohl für Fermionen als auch für Bosonen. Für Fermionen tritt ein Übergang zwischen der Kondensation von Bindungszuständen und dem BCS-Zustand auf, der sogenannte BEC-BCS-Übergang. Die Untersuchung der Zustandsgleichung zeigt, dass im Gegensatz zu Fermi-Gasen und Bose-Gasen mit abstoßender Wechselwirkung Bose-Gase mit anziehender Wechselwirkung zu einer Flüssigkeit kondensieren oder sich verfestigen, bevor es zur Kondensation von Bindungszuständen oder zur Bose-Einstein-Kondensation kommt. Daher können diese Phänomene voraussichtlich nicht in der Gasphase beobachtet werden. Zusammenfassend lässt sich sagen, dass das vorgestellte Näherungsverfahren sehr gut geeignet ist, die erwähnten Phänomene im Zusammenhang mit der Bose-Einstein-Kondensation zu beschreiben.
3

Condensation phenomena in interacting Fermi and Bose gases

Männel, Michael 14 October 2011 (has links)
In dieser Dissertation werden das Anregungsspektrum und das Phasendiagramm wechselwirkender Fermi- und Bosegase untersucht. Zu diesem Zweck wird eine neuartige renormierte Kadanoff-Martin-Näherung vorgestellt, die Selbstwechselwirkung von Teilchen vermeidet und somit eine einheitliche Beschreibung sowohl der normalen als auch der kondensierten Phase ermöglicht. Für Fermionen findet man den BCS-Zustand, benannt nach Bardeen, Cooper und Schrieffer, welcher entscheidend ist für das Phänomen der Supraleitung. Charakteristisch für diesen Zustand ist eine Energielücke im Anregungsspektrum an der Fermi-Energie. Weiterhin tritt für Bosonen eine Bose-Einstein-Kondensation (BEC) auf, bei der das Anregungsspektrum für kleine Impulse linear ist. Letzteres führt zum Phänomen der Suprafluidität. Über die bereits bekannten Phänomene hinaus findet man eine dem BCS-Zustand ähnliche Kondensation von Zweiteilchenbindungszuständen, sowohl für Fermionen als auch für Bosonen. Für Fermionen tritt ein Übergang zwischen der Kondensation von Bindungszuständen und dem BCS-Zustand auf, der sogenannte BEC-BCS-Übergang. Die Untersuchung der Zustandsgleichung zeigt, dass im Gegensatz zu Fermi-Gasen und Bose-Gasen mit abstoßender Wechselwirkung Bose-Gase mit anziehender Wechselwirkung zu einer Flüssigkeit kondensieren oder sich verfestigen, bevor es zur Kondensation von Bindungszuständen oder zur Bose-Einstein-Kondensation kommt. Daher können diese Phänomene voraussichtlich nicht in der Gasphase beobachtet werden. Zusammenfassend lässt sich sagen, dass das vorgestellte Näherungsverfahren sehr gut geeignet ist, die erwähnten Phänomene im Zusammenhang mit der Bose-Einstein-Kondensation zu beschreiben.
4

Untersuchung von neuartigen Supraleitern mit Hilfe der THz-Spektroskopie

Fischer, Theo 14 December 2012 (has links)
In dieser Arbeit werden niederfrequente optische Messungen an vier neuartigen Supraleitern vorgestellt. Im Bereich von 100 GHz bis 3 THz zeigen die vier untersuchten Systeme – LuNi2B2C, Ba(Fe0,9Co0,1)2As2, T’-Pr2CuO4 und Si:Ga – ein sehr unterschiedliches Verhalten. Die beiden erst genannten Supraleiter sind Mehrbandsupraleiter, bei denen die Cooper-Paarkopplung unterschiedlich für verschiedene Fermiflächen ist. T’-Pr2CuO4 ist ein undotierter Kupratsupraleiter, der nach bisheriger Lehrmeinung nicht existieren dürfte. Mit THz-Spektroskopie konnte erstmals die Bildung einer Meißner-Phase in T’-Pr2CuO4 mit optischen Methoden beobachtet werden. Eine gewisse Sonderstellung nimmt Si:Ga als amorpher Supraleiter ein. Si:Ga wird durch Ionenimplantation von Gallium in einen Siliziumwafer hergestellt. Es besteht die Hoffnung, mit Si:Ga halb- und supraleitende Logikblöcke in großem Maßstab auf einem Chip vereinen zu können, da die Ionenimplantation mit den Produktionsprozessen der Halbleiterindustrie kompatibel ist.

Page generated in 0.0313 seconds