Spelling suggestions: "subject:"structure decomposable"" "subject:"structure composable""
1 |
Génération et tracé de structures décomposablesBertault, Francois 24 September 1997 (has links) (PDF)
L'objet de cette thèse est la réalisation d'algorithmes et d'outils d'aide à l'étude des propriétés de structures combinatoires particulières, les structures décomposables. Nous nous intéressons pour cela à la génération aléatoire et systématique de structures décomposables, puis à leur représentation graphique automatique. Ce travail se situe à la frontière entre calcul mathématique et visualisation. Les structures décomposables sont les structures combinatoires qu'il est possible de former récursivement en utilisant des constructeurs aux propriétés particulières. Le point de vue est similaire à celui adopté dans la théorie des espèces de structures, où l'on privilégie la description d'ensembles de structures à partir de transformations d'ensembles existants. Il est alors possible, grâce à des spécifications, de décrire une infinité d'ensembles de structures combinatoires parmi lesquels les permutations, les graphes fonctionnels, les arbres enracinés ou encore les hiérarchies. L'intérêt de cette démarche tient au fait que l'on sait résoudre des problèmes de dénombrement et de comportement asymptotique sur ces ensembles et générer aléatoirement de façon uniforme des structures de ces ensembles. Les applications concernent le calcul de complexité en moyenne d'algorithmes, et la génération de jeux de tests pour la validation expérimentale ou l'étalonnage d'algorithmes. Nous présentons dans cette thèse deux types de résultats. Les premiers concernent la génération de structures décomposables, les seconds leur représentation graphique. Nous présentons une implantation d'un algorithme classique de génération aléatoire de structures décomposables, et nous proposons des techniques permettant de générer tous les éléments d'un ensemble à partir de sa spécification. Nous proposons également un algorithme de tracé de graphes particuliers, pour lesquels il existe à la fois des relations d'adjacence et d'inclusion entre les noeuds. Ces graphes, que nous appelons les graphes composés, sont en effet bien adaptés à la représentation de la nature générique des structures décomposables. Ce travail est concrétisé par la réalisation de deux logiciels de tracé de structures combinatoires. Leur utilisation n'est cependant pas limitée à ce seule domaine et les apsects liés à leur application à la visualisation de graphes en général sont abordés.
|
Page generated in 0.0494 seconds