• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 348
  • 156
  • 40
  • 2
  • 2
  • 1
  • Tagged with
  • 562
  • 275
  • 181
  • 148
  • 143
  • 127
  • 84
  • 76
  • 75
  • 75
  • 72
  • 69
  • 63
  • 61
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mots équilibrés et mots lisses

Paquin, Geneviève January 2008 (has links) (PDF)
Dans ce travail, nous nous intéressons à divers problèmes de la combinatoire des mots, portant principalement sur deux familles: les mots équilibrés et les mots lisses infinis. Il est facile de vérifier que l'intersection entre ces deux familles de mots est vide; c'est pourquoi nous les traiterons de façon indépendante. Dans la première partie, nous étudions les mots équilibrés et des familles de mots dérivées de ces derniers. Les mots infinis sturmiens, aussi appelés des suites sturmiennes, sont étudiés depuis plus de cent ans et sont caractérisés de plusieurs façons : pour un alphabet à deux lettres, ce sont exactement les suites équilibrées non ultimement périodiques et les suites de complexité minimale, c'est-à-dire les suites ayant seulement (n + 1) facteurs de longueur n. Une autre propriété caractéristique des suites sturmiennes est qu'elles décrivent une droite discrète. Les suites épisturmiennes ont récemment été introduites comme étant l'une des généralisations sur plus de 2 lettres des suites sturmiennes : un mot de Christoffel est la version finie d'une suite sturmienne. Dans un premier temps, nous introduisons donc une généralisation des mots de Christoffel sur un alphabet à plus de 2 lettres. Pour ce faire, nous utilisons la propriété qu'un mot de Christoffel est l'image d'une lettre par morphisme sturmien. Nous appelons les mots ainsi obtenus des mols épichristoffels. Il est intéressant de remarquer que ces mots ne sont généralement pas équilibrés, tout comme les suites épisturmiennes. Nous montrons comment obtenir des mots épichristoffels, comment les reconnaître et nous montrons que certaines propriétés des mots de Christoffel se généralisent bien aux mots épichristoffels. Dans un deuxième temps, nous nous intéressons aux mots équilibrés, en lien avec la conjecture de Fraenkel. Cette conjecture énonce que pour un alphabet à k lettres, avec k ≥ 3, il n'existe qu'un unique mot infini équilibré, à permutation des lettres et à décalage près, ayant des fréquences de lettres toutes différentes. Par exemple, pour l'alphabet {1, 2, 3}, ce mot est (1213121)w. Nous montrons que la conjecture est vraie si elle est restreinte à la famille des suites épisturmiennes et du coup, nous caractérisons les suites épisturmiennes équilibrées. Nous approchons ensuite la conjecture de Fraenkel en travaillant sur la superposition de mots de Christoffel. Nous traduisons les travaux de R. Simpson et de R. Morikawa sur les suites de Beatty en terme de mots de Christoffel et nous fournissons les détails passés sous silence dans leurs preuves. Nous obtenons ainsi une condition nécessaire et suffisante pour que deux mots de Christoffel se superposent. Comme un mot équilibré à k lettres peut être vu comme la superposition de k mots équilibrés sur 2 lettres, cette condition nous permet de nous approcher de la conjecture de Fraenkel, sans toutefois la prouver. Nous prouvons toutefois une formule donnant le nombre de superpositions pour deux mots de Christoffel superposables et nous montrons de nouvelles propriétés concernant les mots de Christoffel. La deuxième partie de ce travail porte sur l'étude des mots lisses infinis, principalement les mots lisses extrémaux, c'est-à-dire le plus petit et le plus grand selon l'ordre lexicographique. Nous caractérisons ces mots sur des alphabets à deux lettres de même parité. Pour ce faire, nous décrivons d'abord des algorithmes qui permettent de les construire en temps linéaire selon le nombre d'opérations. Nous montrons ensuite des propriétés de fermeture et dee récurrence pour les mots lisses en général sur un alphabet de même parité, nous fournissons une formule explicite pour la fréquence des lettres dans les mots extrémaux et nous décrivons la factorisation de Lyndon pour une sous-classe des mots extrémaux. Ces résultats sont forts intéressants puisque les propriétés démontrées ne sont pour la plupart que des conjectures pour les mots lisses sur l'alphabet {1, 2}. Par ailleurs, nous montrons que les mots lisses maximaux sur des alphabets contenant deux lettres paires et certains mots de Kolakoski généralisés coïncident. Du coup, nous prouvons plusieurs propriétés concernant la factorisation de Lyndon, les fréquences, la fermeture de l'ensemble des facteurs sous l'image miroir et la récurrence pour les mots de Kolakoski généralisés. Finalement, nous étudions les mots lisses infinis en lien avec les surfaces discrètes. Nous montrons que les seuls pavages lisses du quart de plan décrivant un morceau de surface discrète sont engendrés par des mots de Kolakoski généralisés. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Combinatoire des mots, Mot de Christoffel, Suite sturmienne, Mot épichristoffel, Suite épisturmienne, Conjecture de Fraenkel, Suite équilibrée, Mot lisse, Mot de Kolakoski, Mot de Lyndon, Mot extrémal, Surface discrète.
2

Du séquentiel au parallèle, la recherche arborescente et son application à la programmation quadratique en variables 0.1 /

Roucairol, Catherine, January 1900 (has links)
Th.--Sci.--Paris VI, 1987. / Bibliogr. p. 306-309.
3

Sur le défaut palindromique des mots infinis

Blondin Massé, A. (Alexandre) January 2008 (has links) (PDF)
Lorsqu'on s'intéresse à l'étude de la structure combinatoire d'un mot infini w, une stratégie classique consiste à calculer sa fonction de complexité, c'est-à-dire à décrire le nombre de mots de longueur n qui apparaissent dans w, pour chaque entier n ≥ 0. Récemment, des chercheurs se sont intéressés à un raffinement de cette notion en introduisant la fonction de complexité palindromique: pour chaque entier n ≥ 0, nous calculons le nombre de palindromes de longueur n apparaissant dans w. Rappelons qu'un palindrome est un mot qui se lit de la même façon de gauche à droite que de droite à gauche (par exemple, "radar" et "ressasser" sont des palindromes de la langue française). La connaissance des palindromes apparaissant dans un mot permet de déduire de nombreuses informations précieuses sur sa structure. Par exemple, un mot admettant une infinité de palindromes préfixes est nécessairement récurrent (tout facteur apparaît une infinité de fois) et son langage est fermé sous l'opération miroir. D'autre part, nous étudions également les occurrences de facteurs antipalindromiques (une généralisation de la notion de palindrome), qui semblent naturellement en interaction avec les palindromes usuels. En particulier, nous décrivons les complexités palindromique et antipalindromique de quelques familles importantes de mots: les mots périodiques, les mots sturmiens, le mot de Thue-Morse et les suites de Rote. Dans un deuxième temps, nous étudions le défaut palindromique des mots finis et infinis. Il s'agit d'une mesure de "richesse" ou de "pauvreté" en palindromes des mots. Nous montrons en particulier que certains mots associés aux suites de Rote, à l'instar des mots sturmiens (Droubay, Justin et Pirillo, 2001), sont aussi pleins, c'est-à-dire qu'ils réalisent la complexité palindromique maximale, et nous établissons aussi des conditions sous lesquelles les mots périodiques sont pleins. Une section supplémentaire est consacrée à l'étude des lacunes du mot de Thue-Morse, qui admet une infinité de palindromes, mais dont le défaut est infini (c'est-à-dire qu'il possède une infinité de lacunes palindromiques). En dernier lieu, nous mentionnons quelques problèmes ouverts dans ce passionnant champ de recherche. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Combinatoire, Mots, Palindromes, Antipalindromes, Complexité, Défaut.
4

Jeu de taquin

Harvie, Marie-Ève 03 1900 (has links) (PDF)
L'objet principal de ce mémoire est l'étude du jeu de taquin du point de vue de la combinatoire algébrique. Il s'appuie sur l'article de Mark Haiman « Dual equivalence with a conjecture of Proctor », Discrete Mathematics, 99, 1992 79-113. Dans cet article, Haiman étudie, entre autres, le jeu de taquin de Schützenberger, avec des preuves différentes de celle de Schützenberger; les preuves de Haiman se font uniquement en termes de jeu de taquin. Nous expliquerons la preuve des deux théorèmes fondamentaux du jeu de taquin dus à Schützenberger. Le premier théorème fondamental du jeu de taquin (Théorème 4.0.3) affirme que le redressé par jeu de taquin d'un tableau gauche quelconque ne dépend que de ce tableau, et pas de la suite de glissements choisis. C'est un théorème de confluence en somme. La preuve de Haiman utilise, d'une part, la notion d'équivalence duale des tableaux gauches, qu'il a défini. Il prouve entre autres que tous les tableaux de forme normale sont dualement équivalents (Corollaire 2.2.1). Il démontre aussi que l'équivalence duale des tableaux gauches se ramène à une suite d'équivalences duales élémentaires, c'est-à-dire d'équivalences duales de sous-tableaux à trois cases, appelés « miniatures » (Théorème 2.2.1). D'autre part, il utilise la notion de jeu de taquin « piloté » : les glissements du tableau sont déterminés par un autre tableau. Ceci permet à Haiman de démontrer un très beau résultat de dualité (Lemme 2.3.1) : les cases laissées vacantes dans le tableau T, lors d'un jeu de taquin piloté par le tableau S, déterminent un tableau, lequel est égal au tableau obtenu à partir de S par jeu de taquin piloté par T. Le second théorème fondamental du jeu de taquin (Théorème 4.0.6) affirme que le nombre de tableaux gauches de forme λ qui se redressent par jeu de taquin en un tableau normal T fixé, ne dépend que de la forme gauche λ et de la forme du tableau T (c'est ce qui permet à Lascoux et Schützenberger de donner la première preuve complète de la règle de Littlewood-Richardson). Notamment, le lien entre le jeu de taquin et l'algorithme de Robinson-Schensted est clairement établi : le jeu de taquin permet de simuler cet algorithme (Proposition 3.0.1) et l'équivalence des tableaux par jeu de taquin se ramène à l'égalité des tableaux d'insertion de Schensted de leur permutation ligne-à-ligne (Corollaire 4.0.5), alors que l'équivalence duale se ramène à l'égalité des tableaux d'indexation (Théorème 3.0.2). ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : jeu de taquin, Schützenberger, Haiman, équivalence duale, tableaux, algorithme de Robinson-Schensted.
5

Définitions par réécriture dans le lambda-calcul confluence, réductibilité et typage /

Riba, Colin Kirchner, Claude Blanqui, Frédéric January 2007 (has links) (PDF)
Thèse de doctorat : Informatique : INPL : 2007. / Titre provenant de l'écran-titre.
6

Techniques de résolution basées sur la programmation linéaire pour l'ordonnancement de orojet

Damay, Jean. Quilliot, Alain. January 2008 (has links)
Reproduction de : Thèse de doctorat : Informatique : Clermont-Ferrand 2 : 2005. / Thèse avec annexes. Titre provenant de l'écran-titre. Bibliogr. p. 189-191.
7

Résultats de confluence pour les règles fortes de la logique combinatoire catégorique et liens avec les lambda-calculs /

Hardin-Accart, Thérèse, January 1900 (has links)
Th.--Informatique--Paris 7, 1987. / 1988 d'après la déclaration de dépôt légal. Bibliogr. p. 233-237. Index. Résumé en français.
8

Aspects combinatoires des polynômes de MacDonald

Rodríguez, Adolfo January 2008 (has links) (PDF)
La théorie sur les polynômes de Macdonald a fait l'objet d'une quantité importante de recherches au cours des dernières années. Définis originellement par Macdonald comme une généralisation de quelques-unes des bases les plus importantes de l'anneau des fonctions symétriques, ces polynômes ont des applications dans des domaines tels que la théorie des représentations des groupes quantiques et physique des particules. Ce travail présente quelques-uns des résultats combinatoires les plus importants entourant ces polynômes, en mettant particulièrement l'accent sur la formule combinatoire prouvée récemment par Haglund, Haiman et Loehr pour les polynômes de Macdonald. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Polynômes de Macdonald, Fonctions symétriques, Combinatoire algébrique, Combinatoire énumérative, Théorie des représentations, Géométrie algébrique.
9

OPÉRADES COMBINATOIRES ET ALGÈBRES AMASSÉES

Chapoton, Frédéric 26 May 2009 (has links) (PDF)
Ce texte contient une présentation de mes travaux et certaines de mes publications.
10

Dénombrement des polyominos F-convexes sur le réseau triangulaire et bijection entre polyominos F-convexes hexagonaux et triangulaires

Lachapelle, Luc January 2008 (has links) (PDF)
Les polyominos sur les réseaux carré et hexagonal ayant des propriétés de convexité ont été largement étudiés, et leurs classes de symétrie ont été dénombrées (par leurs séries génératrices selon divers paramètres: l'aire, le périmètre, la largeur, la hauteur, etc.). Les polyominos pouvant être considérés comme des objets dans l'espace, on les dénombre à translations, à rotations et à réflexions près. Un résultat classique de la théorie des groupes, le lemme de Burnside nous aidera à ce niveau. On s'intéresse donc au dénombrement des classes de polyominos convexes ayant des propriétés de symétries. Dans ce mémoire on s'intéresse aux polyominos sur le réseau triangulaire. Quelques travaux ont été faits sur ce réseau, notamment sur les polyominos parallélogrammes, les polyominos dirigés et les animaux. Ce mémoire porte entre autres sur le dénombrement des classes de symétrie des polyominos F-convexes (convexité forte) sur le réseau triangulaire. On présente aussi quelques résultats concernant les polyominos HV-convexes (l'équivalent des polyominos EG-convexes sur le réseau hexagonal, soit une convexité selon un axe horizontal et un axe vertical). Les formes de convexité vont êtres définies dans l'introduction. On introduira aussi une classe particulière de polyominos, soit les polyominos filiformes. Le premier chapitre porte sur le dénombrement des polyominos triangulaires F-convexes. On utilisera pour cela les méthodes de Fouad Hassani et de Mireille Bousquet-Mélou, qui ont fait leurs preuves sur le réseau hexagonal. On obtient ainsi des formes closes remarquables pour leurs séries génératrices selon plusieurs paramètres, dont la largeur, l'aire et le périmètre. Le deuxième chapitre porte sur les polyominos HV-convexes, dont on donne les équations fonctionnelles. Le troisième chapitre dénombre des polyominos convexes triangulaires particuliers, comme les polyominos partages, les polyominos tas et les polyominos parallélogrammes. Le quatrième chapitre dénombre les classes de symétries des polyominos F-convexes, soit leurs orbites. On fait aussi un rappel de quelques résultats de la théorie des groupes et de leur action, notamment sur les groupes diédraux D6 des isométries de l'hexagone et D2, sous-groupe de D4 des isométries du carré. En se basant sur la dualité des graphes plans, on présente dans le cinquième chapitre une bijection entre les polyominos C-convexes du réseau hexagonal et des structures "polyominomiales" sur le réseau triangulaire. Ces structures généralisent les polyominos triangulaires en admettant des parties filiformes tout en satisfaisant les conditions de C-convexité. De plus, nous donnons des formules simples de passage pour ce qui est des paramètres largeur, aire et périmètre selon cette bijection. On en déduit, par restriction, une bijection entre les polyominos F-convexes des réseaux hexagonal et triangulaire. Notons que tous les calculs sur les séries génératrices ont été faits sur le logiciel Maple. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Polyomino(s), Polyomino(s) convexe(s), Réseau triangulaire, Dénombrement.

Page generated in 0.0378 seconds