• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural Insights from the NMR Spectroscopy of Quadrupolar Nuclei: Exploiting Electric Field Gradient and Spin-Spin Coupling Tensors

Perras, Frédéric Alain January 2015 (has links)
NMR spectroscopy has evolved into one of the most important characterization techniques in chemistry with which it is possible to obtain valuable structural, dynamical, and mechanistic information. Most applications of NMR have however been limited to the use of nuclei having spin quantum numbers of 1/2. This thesis discusses the developments that have been advanced in order to extract quantitative structural information from the NMR spectroscopy of quadrupolar nuclei (spin, I>1/2) which account for the vast majority of the NMR-active nuclei. In a first part of the thesis, a NMR crystallographic method is developed which uses the electric field gradient tensor measured at the nuclear sites as an experimental constraint in DFT-based crystal structure refinements. This inclusion of experimental data into crystal structure refinements enables the determination of higher quality, and experimentally-relevant, structures. We apply this new methodology in order to determine higher quality crystal structures for the non-linear optical material Na2B2Al2O7, sodium pyrophosphates, and the near-zero thermal expansion material ZrMgMo3O12. In a second part of this thesis, experimental techniques are developed for the measurement of spin-spin coupling between pairs of quadrupolar nuclei; the measurement of spin-spin coupling carries with it extremely valuable distance and connectivity information. Using DOR NMR, heteronuclear residual dipolar coupling as well as homonuclear J coupling multiplets can be observed. Notably, the J coupling between quadrupolar nuclei can still be measured in A2 spin systems, unlike in the case of pairs of spin-1/2 nuclei. The theory that was developed for the characterization of these multiplets was extended for the general simulation of exact NMR spectra of quadrupolar. This program, known as QUEST, is now free to use by anyone in the scientific community. Pulsed J-resolved NMR experiments are then described which enable the facile measurement of J and dipolar coupling in homonuclear pairs of quadrupolar nuclei. Notably, the J splitting is greatly amplified in A2 spin systems which provides strong structural information and enables the precise detection of smaller J coupling constants. These techniques are applied towards directly studying gallium metal-metal bonding interactions as well as boron-boron bonds in diboron compounds of importance in β-boration chemistry.
2

Generation and Applications of Structure Envelopes for Metal-Organic Frameworks

Yakovenko, Andrey A. 03 October 2013 (has links)
Synthesis of polycrystalline, vs. single-crystalline porous materials, such as metal-organic frameworks (MOFs), is usually beneficial due to shorter synthetic time and higher yields. However, the structural characterization of these materials by X-ray powder diffraction can be complicated. Even more difficult, is to track structural changes of MOFs by in situ experiments. Hence, we designed several successful techniques for the structural investigation of porous MOFs. These methods utilize the Structure Envelope (SE) density maps. SEs are surfaces which describing the pore system with the framework. It was shown that these maps can be easily generated from the structure factors of a few (1 to 10) of the most intense low index reflections. Application of SE in Charge Flipping calculations shortens and simplifies structure determination of MOF materials. This method provides excellent MOF models which can be used as a good starting point for their refinement. However, the most interesting results have been found by using Difference Envelope Density (DED) analysis. DED plots are made by taking the difference between observed and calculated SE densities. This allows us to study guest related issues of MOFs such as, location of guest molecules in the pores, tracking activation of MOFs and gas loading, etc. We also have shown that, DED created from routine powder diffraction patterns might provide very important information about MOF structure itself. In fact DED can be used for study of interpenetration, substituents locations and effects conformational changes in the MOF ligands. Generation and analysis of SEs and DEDs are easy and straightforward. It provides the information needed to explain major deviations in structure-property relationship in MOFs. In our opinion, this method might become one of the important and routine techniques for MOFs structural analysis.
3

Sticky triangles: New tools for experimental phasing of biological macromolecules / Sticky triangles: Neue Werkzeuge für die experimentelle Phasierung von biologischen Makromolekülen

Beck, Tobias 16 September 2010 (has links)
No description available.

Page generated in 0.0978 seconds