• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mutational Analysis and Redesign of Alpha-class Glutathione Transferases for Enhanced Azathioprine Activity

Modén, Olof January 2013 (has links)
Glutathione transferase (GST) A2-2 is the human enzyme most efficient in catalyzing azathioprine activation. Structure-function relationships were sought explaining the higher catalytic efficiency compared to other alpha class GSTs. By screening a DNA shuffling library, five recombined segments were identified that were conserved among the most active mutants. Mutational analysis confirmed the importance of these short segments as their insertion into low-active GSTs introduced higher azathioprine activity. Besides, H-site mutagenesis led to decreased azathioprine activity when the targeted positions belonged to these conserved segments and mainly enhanced activity when other positions were targeted. Hydrophobic residues were preferred in positions 208 and 213. The prodrug azathioprine is today primarily used for maintaining remission in inflammatory bowel disease. Therapy leads to adverse effects for 30 % of the patients and genotyping of the metabolic genes involved can explain some of these incidences. Five genotypes of human A2-2 were characterized and variant A2*E had 3–4-fold higher catalytic efficiency with azathioprine, due to a proline mutated close to the H-site. Faster activation might lead to different metabolite distributions and possibly more adverse effects. Genotyping of GSTs is recommended for further studies. Molecular docking of azathioprine into a modeled structure of A2*E suggested three positions for mutagenesis. The most active mutants had small or polar residues in the mutated positions. Mutant L107G/L108D/F222H displayed a 70-fold improved catalytic efficiency with azathioprine. Determination of its structure by X-ray crystallography showed a widened H-site, suggesting that the transition state could be accommodated in a mode better suited for catalysis. The mutational analysis increased our understanding of the azathioprine activation in alpha class GSTs and highlighted A2*E as one factor possibly behind the adverse drug-effects. A successfully redesigned GST, with 200-fold enhanced catalytic efficiency towards azathioprine compared to the starting point A2*C, might find use in targeted enzyme-prodrug therapies.

Page generated in 0.0785 seconds