• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Prediction of the Interference Drag of a Streamlined Strut Intersecting a Surface in Transonic Flow

Tetrault, Philippe-Andre 15 February 2000 (has links)
In transonic flow, the aerodynamic interference that occurs on a strut-braced wing airplane, pylons, and other applications is significant. The purpose of this work is to provide relationships to estimate the interference drag of wing-strut, wing-pylon, and wing-body arrangements. Those equations are obtained by fitting a curve to the results obtained from numerous Computational Fluid Dynamics (CFD) calculations using state-of-the-art codes that employ the Spalart-Allmaras turbulence model. In order to estimate the effect of the strut thickness, the Reynolds number of the flow, and the angle made by the strut with an adjacent surface, inviscid and viscous calculations are performed on a symmetrical strut at an angle between parallel walls. The computations are conducted at a Mach number of 0.85 and Reynolds numbers of 5.3 and 10.6 million based on the strut chord. The interference drag is calculated as the drag increment of the arrangement compared to an equivalent two-dimensional strut of the same cross-section. The results show a rapid increase of the interference drag as the angle of the strut deviates from a position perpendicular to the wall. Separation regions appear for low intersection angles, but the viscosity generally provides a positive effect in alleviating the strength of the shock near the junction and thus the drag penalty. When the thickness-to-chord ratio of the strut is reduced, the flowfield is disturbed only locally at the intersection of the strut with the wall. This study provides an equation to estimate the interference drag of simple intersections in transonic flow. In the course of performing the calculations associated with this work, an unstructured flow solver was utilized. Accurate drag prediction requires a very fine grid and this leads to problems associated with the grid generator. Several challenges facing the unstructured grid methodology are discussed: slivers, grid refinement near the leading edge and at the trailing edge, grid convergence studies, volume grid generation, and other practical matters concerning such calculations. / Ph. D.
2

Multidisciplinary Design Optimization and Industry Review of a 2010 Strut-Braced Wing Transonic Transport

Gundlach, John Frederick 26 June 1999 (has links)
Recent transonic airliner designs have generally converged upon a common cantilever low-wing configuration. It is unlikely that further large strides in performance are possible without a significant departure from the present design paradigm. One such alternative configuration is the strut-braced wing, which uses a strut for wing bending load alleviation, allowing increased aspect ratio and reduced wing thickness to increase the lift to drag ratio. The thinner wing has less transonic wave drag, permitting the wing to unsweep for increased areas of natural laminar flow and further structural weight savings. High aerodynamic efficiency translates into reduced fuel consumption and smaller, quieter, less expensive engines with lower noise pollution. A Multidisciplinary Design Optimization (MDO) approach is essential to understand the full potential of this synergistic configuration due to the strong interdependency of structures, aerodynamics and propulsion. NASA defined a need for a 325-passenger transport capable of flying 7500 nautical miles at Mach 0.85 for a 2010 date of entry into service. Lockheed Martin Aeronautical systems (LMAS), our industry partner, placed great emphasis on realistic constraints, projected technology levels, manufacturing and certification issues. Numerous design challenges specific to the strut-braced wing became apparent through the interactions with LMAS, and modifications had to be made to the Virginia Tech code to reflect these concerns, thus contributing realism to the MDO results. The SBW configuration is 9.2-17.4% lighter, burns 16.2-19.3% less fuel, requires 21.5-31.6% smaller engines and costs 3.8-7.2% less than equivalent cantilever wing aircraft. / Master of Science
3

The Role of Constraints and Vehicle Concepts in Transport Design: A Comparison of Cantilever and Strut-Braced Wing Airplane Concepts

Ko, Yan-Yee Andy 15 May 2000 (has links)
The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a strut-braced wing (SBW) aircraft compared to similarly designed cantilever wing aircraft. In this study, four different configurations are examined: cantilever wing aircraft, fuselage mounted engine SBW, wing mounted engine SBW, and wingtip mounted engine SBW. The cantilever wing design is used as a baseline for comparison. Two mission profiles were used. The first called for a 7380 nmi range with a 305 passenger load based on a typical Boeing 777 mission. The second profile was supplied by Lockheed Martin Aeronautical Systems (LMAS) and has a 7500 nmi range with a 325 passenger load. Both profiles have a 0.85 cruise Mach number and a 500 nmi reserve range. Several significant refinements and improvements have been made to the previously developed MDO code for this study. Improvements included using ADIFOR (Automatic Differentiation for FORTRAN) to explicitly compute gradients in the design code. Another major change to the MDO code is the improvement of the optimization architecture to allow for a more robust optimization process. During the Virginia Tech SBW study, Lockheed Martin Aeronautical Systems (LMAS) was tasked by NASA Langley to evaluate the results of previous SBW studies. During this time, the original weight equations which were obtained from NASA Langley's Flight Optimization System (FLOPS) was replaced by LMAS proprietary equations. A detailed study on the impact of the equations from LMAS on the four designs was done, comparing them to the designs that used the FLOPS equations. Results showed that there was little difference in the designs obtained using the new equations. An investigation of the effect of the design constraints on the different configurations was performed. It was found that in all the design configurations, the aircraft range proved to be the most crucial constraint in the design. However, results showed that all three SBW designs were less sensitive to constraints than the cantilever wing aircraft. Finally, a double-deck fuselage concept was considered. A double deck fuselage configuration would result in a greater wing/strut intersection angle which would, in turn, reduce interference drag at that section. Due to the lack of available data on double deck fuselage aircraft, a detailed study of passenger and cargo layout was done. Optimized design showed that there was a small improvement in takeoff gross weight and fuel weight over the single-deck fuselage SBW results when compared with a similarly designed cantilever wing aircraft. / Master of Science
4

Multidisciplinary Design Optimization of a Strut-Braced Wing Aircraft

Grasmeyer, Joel M. III 07 May 1998 (has links)
The objective of this study is to use Multidisciplinary Design Optimization (MDO) to investigate the use of truss-braced wing concepts in concert with other advanced technologies to obtain a significant improvement in the performance of transonic transport aircraft. The truss topology introduces several opportunities. A higher aspect ratio and decreased wing thickness can be achieved without an increase in wing weight relative to a cantilever wing. The reduction in thickness allows the wing sweep to be reduced without incurring a transonic wave drag penalty. The reduced wing sweep allows a larger percentage of the wing area to achieve natural laminar flow. Additionally, tip-mounted engines can be used to reduce the induced drag. The MDO approach helps the designer achieve the best technology integration by making optimum trades between competing physical effects in the design space. To perform this study, a suite of approximate analysis tools was assembled into a complete, conceptual-level MDO code. A typical mission profile of the Boeing 777-200IGW was chosen as the design mission profile. This transport carries 305 passengers in mixed class seating at a cruise Mach number of 0.85 over a range of 7,380 nmi. Several single-strut configurations were optimized for minimum takeoff gross weight, using eighteen design variables and seven constraints. The best single-strut configuration shows a 15% savings in takeoff gross weight, 29% savings in fuel weight, 28% increase in L/D, and a 41% increase in seat-miles per gallon relative to a comparable cantilever wing configuration. In addition to the MDO work, we have proposed some innovative, unconventional arch-braced and ellipse-braced concepts. A plastic solid model of one of the novel configurations was created using the I-DEAS solid modeling software and rapid prototyping hardware. / Master of Science
5

Effect of Compressive Force on Aeroelastic Stability of a Strut-Braced Wing

Sulaeman, Erwin 09 April 2002 (has links)
Recent investigations of a strut-braced wing (SBW) aircraft show that, at high positive load factors, a large tensile force in the strut leads to a considerable compressive axial force in the inner wing, resulting in a reduced bending stiffness and even buckling of the wing. Studying the influence of this compressive force on the structural response of SBW is thus of paramount importance in the early stage of SBW design. The purpose of the this research is to investigate the effect of compressive force on aeroelastic stability of the SBW using efficient structural finite element and aerodynamic lifting surface methods. A procedure is developed to generate wing stiffness distribution for detailed and simplified wing models and to include the compressive force effect in the SBW aeroelastic analysis. A sensitivity study is performed to generate response surface equations for the wing flutter speed as functions of several design variables. These aeroelastic procedures and response surface equations provide a valuable tool and trend data to study the unconventional nature of SBW. In order to estimate the effect of the compressive force, the inner part of the wing structure is modeled as a beam-column. A structural finite element method is developed based on an analytical stiffness matrix formulation of a non-uniform beam element with arbitrary polynomial variations in the cross section. By using this formulation, the number of elements to model the wing structure can be reduced without degrading the accuracy. The unsteady aerodynamic prediction is based on a discrete element lifting surface method. The present formulation improves the accuracy of existing lifting surface methods by implementing a more rigorous treatment on the aerodynamic kernel integration. The singularity of the kernel function is isolated by implementing an exact expansion series to solve an incomplete cylindrical function problem. A hybrid doublet lattice/doublet point scheme is devised to reduce the computational time. SBW aircraft selected for the present study is the fuselage-mounted engine configuration. The results indicate that the detrimental effect of the compressive force to the wing buckling and flutter speed is significant if the wing-strut junction is placed near the wing tip. / Ph. D.
6

Multidisciplinary Design Optimization of a Medium Range Transonic Truss-Braced Wing Transport Aircraft

Meadows, Nicholas Andrew 08 September 2011 (has links)
This study utilizes Multidisciplinary Design Optimization (MDO) techniques to explore the effectiveness of the truss-braced (TBW) and strut-braced (SBW) wing configurations in enhancing the performance of medium range, transonic transport aircraft. The truss and strut-braced wing concepts synergize structures and aerodynamics to create a planform with decreased weight and drag. Past studies at Virginia Tech have found that these configurations can achieve significant performance benefits when compared to a cantilever aircraft with a long range, Boeing 777-200ER-like mission. The objective of this study is to explore these benefits when applied to a medium range Boeing 737-800NG-like aircraft with a cruise Mach number of 0.78, a 3,115 nautical mile range, and 162 passengers. Results demonstrate the significant performance benefits of the SBW and TBW configurations. Both configurations exhibit reduced weight and fuel consumption. Configurations are also optimized for 1990's or advanced technology aerodynamics. For the 1990's technology minimum TOGW cases, the SBW and TBW configurations achieve reductions in the TOGW of as much as 6% with 20% less fuel weight than the comparable cantilever configurations. The 1990's technology minimum fuel cases offer fuel weight reductions of about 13% compared to the 1990's technology minimum TOGW configurations and 11% when compared to the 1990's minimum fuel optimized cantilever configurations. The advanced aerodynamics technology minimum TOGW configurations feature an additional 4% weight savings over the comparable 1990's technology results while the advanced technology minimum fuel cases show fuel savings of 12% over the 1990's minimum fuel results. This translates to a 15% reduction in TOGW for the advanced technology minimum TOGW cases and a 47% reduction in fuel consumption for the advanced technology minimum fuel cases when compared to the simulated Boeing 737-800NG. It is found that the TBW configurations do not offer significant performance benefits over the comparable SBW designs. / Master of Science
7

The Effect of Reducing Cruise Altitude on the Topology and Emissions of a Commercial Transport Aircraft

McDonald, Melea E. 02 September 2010 (has links)
In recent years, research has been conducted for alternative commercial transonic aircraft design configurations, such as the strut- braced wing and the truss-braced wing aircraft designs, in order to improve aircraft performance and reduce the impact of aircraft emissions as compared to a typical cantilever wing design. Research performed by Virginia Tech in conjunction with NASA Langley Research Center shows that these alternative configurations result in 20% or more reduction in fuel consumption, and thus emissions. Another option to reduce the impact of emissions on the environment is to reduce the aircraft cruise altitude, where less nitrous oxides are released into the atmosphere and contrail formation is less likely. The following study was performed using multidisciplinary design optimization (MDO) in ModelCenterTM for cantilever wing, strut-braced wing, and truss-braced wing designs and optimized for minimum takeoff gross weight at 7730 NM range and minimum fuel weight for 7730 and 4000 NM range at the following cruise altitudes: 25,000; 30,000; and 35,000 ft. For the longer range, both objective functions exhibit a large penalty in fuel weight and takeoff gross weight due to the increased drag from the fixed fuselage when reducing cruise altitude. For the shorter range, there was a slight increase in takeoff gross weight even though there was a large increase in fuel weight for decreased cruise altitudes. Thus, the benefits of reducing cruise altitude were offset by increased fuel weight. Either a two-jury truss-braced wing or telescopic strut could be studied to reduce the fuel penalty. / Master of Science
8

Structural Optimization and Design of a Strut-Braced Wing Aircraft

Naghshineh-Pour, Amir H. 15 December 1998 (has links)
A significant improvement can be achieved in the performance of transonic transport aircraft using Multidisciplinary Design Optimization (MDO) by implementing truss-braced wing concepts in combination with other advanced technologies and novel design innovations. A considerable reduction in drag can be obtained by using a high aspect ratio wing with thin airfoil sections and tip-mounted engines. However, such wing structures could suffer from a significant weight penalty. Thus, the use of an external strut or a truss bracing is promising for weight reduction. Due to the unconventional nature of the proposed concept, commonly available wing weight equations for transport aircraft will not be sufficiently accurate. Hence, a bending material weight calculation procedure was developed to take into account the influence of the strut upon the wing weight, and this was coupled to the Flight Optimization System (FLOPS) for total wing weight estimation. The wing bending material weight for single-strut configurations is estimated by modeling the wing structure as an idealized double-plate model using a piecewise linear load method. Two maneuver load conditions 2.5g and -1.0g factor of safety of 1.5 and a 2.0g taxi bump are considered as the critical load conditions to determine the wing bending material weight. From preliminary analyses, the buckling of the strut under the -1.0g load condition proved to be the critical structural challenge. To address this issue, an innovative design strategy introduces a telescoping sleeve mechanism to allow the strut to be inactive during negative g maneuvers and active during positive g maneuvers. Also, more wing weight reduction is obtained by optimizing the strut force, a strut offset length, and the wing-strut junction location. The best configuration shows a 9.2% savings in takeoff gross weight, an 18.2% savings in wing weight and a 15.4% savings in fuel weight compared to a cantilever wing counterpart. / Master of Science
9

Multidisciplinary Design Optimization of Low-Noise Transport Aircraft

Leifsson, Leifur Thor 04 April 2006 (has links)
The objective of this research is to examine how to design low-noise transport aircraft using Multidisciplinary Design Optimization (MDO). The subject is approached by designing for low-noise both implicitly and explicitly. The explicit design approach involves optimizing an aircraft while explicitly constraining the noise level. An MDO framework capable of optimizing both a cantilever wing and a Strut-Braced-Wing (SBW) aircraft was developed. The framework employs aircraft analysis codes previously developed at the Multidisciplinary Design and Analysis (MAD) Center at Virginia Tech (VT). These codes have been improved here to provide more detailed and realistic analysis. The Aircraft Noise Prediction Program (ANOPP) is used for airframe noise analysis. The objective is to use the MDO framework to design aircraft for low-airframe-noise at the approach conditions and quantify the change in weight and performance with respect to a traditionally designed aircraft. The results show that reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large performance and weight penalty. Therefore, more dramatic changes to the aircraft design are needed to achieve a significant airframe noise reduction. Another study showed that the trailing-edge (TE) flap can be eliminated, as well as all the noise associated with that device, without incurring a significant weight and performance penalty. To achieve approximately 10 EPNdB TE flap noise reduction the flap area was reduced by 82% while the wing reference area was increased by 12.4% and the angle of attack increased from 7.6 degrees to 12.1 degrees to meet the required lift at approach. The wing span increased by approximately 2.2%. Since the flap area is being minimized, the wing weight suffers only about a 2,000 lb penalty. The increase in wing span provides a reduction in induced drag to balance the increased parasite drag due to a lower wing aspect ratio. As a result, the aircraft has been designed to have minimal TE flaps without any significant performance penalty. If noise due to the leading-edge (LE) slats and landing gear are reduced, which is currently being pursued, the elimination of the flap will be very significant as the clean wing noise will be the next 'noise barrier'. Lastly, a comparison showed that SBW aircraft can be designed to be 10% lighter and require 15% less fuel than cantilever wing aircraft. Furthermore, an airframe noise analysis showed that SBW aircraft with short fuselage-mounted landing gear could have similar or potentially a lower airframe noise level than comparable cantilever wing aircraft. The implicit design approach involves selecting a configuration that supports a low-noise operation, and optimizing for performance. A Blended-Wing-Body (BWB) transport aircraft has the potential for significant reduction in environmental emissions and noise compared to a conventional transport aircraft. A BWB with distributed propulsion was selected as the configuration for the implicit low-noise design in this research. An MDO framework previously developed at the MAD Center at Virginia Tech has been refined to give more accurate and realistic aircraft designs. To study the effects of distributed propulsion, two different BWB configurations were optimized. A conventional propulsion BWB with four pylon mounted engines and two versions of a distributed propulsion BWB with eight boundary layer ingestion inlet engines. A 'conservative' distributed propulsion BWB design with a 20% duct weight factor and a 95% duct efficiency, and an 'optimistic' distributed propulsion BWB design with a 10% duct weight factor and a 97% duct efficiency were studied. The results show that 65% of the possible savings due to 'filling in' the wake are required for the 'optimistic' distributed propulsion BWB design to have comparable $TOGW$ as the conventional propulsion BWB, and 100% savings are required for the 'conservative' design. Therefore, considering weight alone, this may not be an attractive concept. Although a significant weight penalty is associated with the distributed propulsion system presented in this study, other characteristics need to be considered when evaluating the overall effects. Potential benefits of distributed propulsion are, for example, reduced propulsion system noise, improved safety due to engine redundancy, a less critical engine-out condition, gust load/flutter alleviation, and increased affordability due to smaller, easily-interchangeable engines. / Ph. D.

Page generated in 0.0552 seconds