• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monitoring vegetation dynamics in Zhongwei, an arid city of Northwest China

Wang, Haitao 10 June 2014 (has links)
This case study used Zhongwei City in northwest China to quantify the urbanization and revegetation processes (1990-2011) through a unified sub-pixel measure of vegetation cover. Research strategies included: (1) Conduct sub-pixel vegetation mapping (1990, 1996, 2004, and 2011) with Random Forest (RF) algorithm by integrating high (OrbView-3) and medium spatial resolution (Landsat TM) data; (2) Examine simple Dark Object Subtraction (DOS) atmospheric correction method to support temporal generalization of sub-pixel mapping algorithm; (3) And characterize patterns of vegetation cover dynamics based on change detection analysis. We found the RF algorithm, combined with simple DOS, showed good generalization capability for sub-pixel vegetation mapping. Predicted sub-pixel vegetation proportions were consistent for "pseudo-invariant" pixels. Vegetation change analysis suggested persistent urban development within the city boundary, accompanied by a continuous expansion of revegetated area at the city fringe. Urban development occurred at both the suburban and urban core areas, and was mainly shaped by transportation networks. A transition in revegetation practices was documented: the large-scale governmental revegetation programs were replaced by the commercial afforestation conducted by industries. This study showed a slight increase in vegetation cover over the time period, balanced by losses to urban expansion, and a likely severe degradation of vegetation cover due to conversion of arable land to desert vegetation. The loss of arable land and the growth of artificial desert vegetation have yielded a dynamic equilibrium in terms of overall vegetation cover during 1990 to 2011, but in the long run vegetation quality is certainly reduced. / Master of Science
2

Quantifying urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales

Okujeni, Akpona 15 December 2014 (has links)
Das weltweite Ausmaß der Urbanisierung zählt zu den großen ökologischen Herausforderungen des 21. Jahrhunderts. Die Fernerkundung bietet die Möglichkeit das Verständnis dieses Prozesses und seiner Auswirkungen zu erweitern. Der Fokus dieser Arbeit lag in der Quantifizierung der städtischen Landbedeckung mittels Maschinellen Lernens und räumlich unterschiedlich aufgelöster Hyperspektraldaten. Untersuchungen berücksichtigten innovative methodische Entwicklungen und neue Möglichkeiten, die durch die bevorstehende Satellitenmission EnMAP geschaffen werden. Auf Basis von Bilder des flugzeugestützten HyMap Sensors mit Auflösungen von 3,6 m und 9 m sowie simulierten EnMAP-Daten mit einer Auflösung von 30 m wurde eine Kartierung entlang des Stadt-Umland-Gradienten Berlins durchgeführt. Im ersten Teil der Arbeit wurde die Kombination von Support Vektor Regression mit synthetischen Trainingsdaten für die Subpixelkartierung eingeführt. Ergebnisse zeigen, dass sich der Ansatz gut zur Quantifizierung thematisch relevanter und spektral komplexer Oberflächenarten eignet, dass er verbesserte Ergebnisse gegenüber weiteren Subpixelverfahren erzielt, und sich als universell einsetzbar hinsichtlich der räumlichen Auflösung erweist. Im zweiten Teil der Arbeit wurde der Wert zukünftiger EnMAP-Daten für die städtische Fernerkundung abgeschätzt. Detaillierte Untersuchungen unterstreichen deren Eignung für eine verbesserte und erweiterte Beschreibung der Stadt nach dem bewährten Vegetation-Impervious-Soil-Schema. Analysen der Möglichkeiten und Grenzen zeigen sowohl Nachteile durch die höhere Anzahl von Mischpixel im Vergleich zu hyperspektralen Flugzeugdaten als auch Vorteile aufgrund der verbesserten Differenzierung städtischer Materialien im Vergleich zu multispektralen Daten. Insgesamt veranschaulicht diese Arbeit, dass die Kombination von hyperspektraler Satellitenbildfernerkundung mit Methoden des Maschinellen Lernens eine neue Qualität in die städtische Fernerkundung bringen kann. / The global dimension of urbanization constitutes a great environmental challenge for the 21st century. Remote sensing is a valuable Earth observation tool, which helps to better understand this process and its ecological implications. The focus of this work was to quantify urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales. Experiments considered innovative methodological developments and novel opportunities in urban research that will be created by the upcoming hyperspectral satellite mission EnMAP. Airborne HyMap data at 3.6 m and 9 m resolution and simulated EnMAP data at 30 m resolution were used to map land cover along an urban-rural gradient of Berlin. In the first part of this work, the combination of support vector regression with synthetically mixed training data was introduced as sub-pixel mapping technique. Results demonstrate that the approach performs well in quantifying thematically meaningful yet spectrally challenging surface types. The method proves to be both superior to other sub-pixel mapping approaches and universally applicable with respect to changes in spatial scales. In the second part of this work, the value of future EnMAP data for urban remote sensing was evaluated. Detailed explorations on simulated data demonstrate their suitability for improving and extending the approved vegetation-impervious-soil mapping scheme. Comprehensive analyses of benefits and limitations of EnMAP data reveal both challenges caused by the high numbers of mixed pixels, when compared to hyperspectral airborne imagery, and improvements due to the greater material discrimination capability when compared to multispectral spaceborne imagery. In summary, findings demonstrate how combining spaceborne imaging spectrometry and machine learning techniques could introduce a new quality to the field of urban remote sensing.

Page generated in 0.0467 seconds