Spelling suggestions: "subject:"exponential"" "subject:"biexponential""
1 |
Tail asymptotics of queueing networks with subexponential service timesKim, Jung-Kyung 06 July 2009 (has links)
This dissertation is concerned with the tail asymptotics of queueing networks with subexponential service time distributions. Our objective is to investigate the tail characteristics of key performance measures such as cycle times and waiting times on a variety of queueing models which may arise in many applications such as communication and manufacturing systems.
First, we focus on a general class of closed feedforward fork and join queueing networks under the assumption that the service time distribution of at least one station is subexponential.
Our goal is to derive the tail asymptotics of transient cycle times and waiting times. Furthermore, we argue that under certain conditions the asymptotic tail distributions remain the same for stationary cycle times and waiting times. Finally, we provide numerical experiments in order to understand how fast the convergence of tail probabilities of cycle times and waiting times is to their asymptotic counter parts.
Next, we consider closed tandem queues with finite buffers between stations. We assume that at least one
station has a subexponential service time distribution. We analyze this system under communication blocking and manufacturing blocking rules. We are interested in the tail asymptotics of transient cycle times and waiting times. Furthermore, we study under which conditions on system parameters a stationary regime exists and the transient results can be generalized to stationary counter parts. Finally, we provide numerical examples to understand the convergence behavior of the tail asymptotics of transient cycle times and waiting times.
Finally, we study open tandem queueing networks with subexponential service time distributions. We assume that number of customers in front of the first station is infinite and there is infinite room for finished customers after the last station but the size of the buffer between two consecutive stations is finite. Using (max,+) linear recursions, we investigate the tail asymptotics of transient response times and waiting times under both communication blocking and manufacturing blocking schemes. We also discuss under which conditions these results can be generalized to the tail asymptotics of stationary response times and waiting times. Finally, we provide numerical examples to investigate the convergence of the tail probabilities of transient response times and waiting times to their asymptotic counter parts.
|
2 |
Η μέθοδος παραγοντοποίησης ακεραίων αριθμών number field sieve : θεωρία και υλοποίηση / The integer factorization algorithm number field sieve : theory and implementationΚαραπάνος, Νικόλαος 21 September 2010 (has links)
Πολλά κρυπτογραφικά σχήματα δημόσιου κλειδιού βασίζονται στο γεγονός ότι είναι υπολογιστικά δύσκολο να παραγοντοποιήσουμε μεγάλους ακέραιους αριθμούς. Ο ταχύτερος, και ταυτόχρονα πολυπλοκότερος, κλασσικός αλγόριθμος που είναι γνωστός μέχρι σήμερα για την παραγοντοποίηση ακεραίων μήκους άνω των 110 δεκαδικών ψηφίων είναι ο General Number Field Sieve (GNFS). Ο αλγόριθμος αυτός είναι ο καρπός πολλών ετών έρευνας, κατά τη διάρκεια της οποίας παράγονταν ολοένα και ταχύτεροι αλγόριθμοι για να καταλήξουμε μέχρι στιγμής στον αλγόριθμο GNFS.
Πρωταρχικός σκοπός της παρούσης μεταπτυχιακής εργασίας είναι η παρουσίαση του θεωρητικού μαθηματικού υπόβαθρου πάνω στο οποίο βασίζεται ο GNFS καθώς και η ακολουθιακή υλοποίηση της βασικής εκδοχής του αλγορίθμου. Ως γλώσσα υλοποίησης επιλέχθηκε η C++. Η υλοποίηση έγινε σε συνεργασία με τον συμφοιτητή μου και αγαπητό φίλο Χρήστο Μπακογιάννη, όπου στα πλαίσια της μεταπτυχιακής του εργασίας πραγματοποιήθηκε η μεταφορά της ακολουθιακής υλοποίησης του αλγορίθμου σε παράλληλο κατανεμημένο περιβάλλον χρησιμοποιώντας το Message Passing Interface (MPI). Ο πηγαίος κώδικας της υλοποίησης καθώς και σχετικές πληροφορίες υπάρχουν online στη σελίδα http://kmgnfs.cti.gr.
Σημειώνεται πως για την ευκολότερη και απρόσκοπτη ανάγνωση της εργασίας αυτής, ο αναγνώστης θα πρέπει να έχει ένα βαθμό εξοικείωσης με βασικές έννοιες της θεωρίας αριθμών, της αλγεβρικής θεωρίας αριθμών και της γραμμικής άλγεβρας. / Many public-key cryptosystems build their security on our inability to factor very large integers. The General Number Field Sieve (GNFS) is the most efficient, and at the same time most complex, classical known algorithm for factoring integers larger than 110 digits. This algorithm is the result of many years of research, during which, faster and faster algorithms were developed finally winding up to the development of the GNFS.
The main purpose of this master thesis is the presentation of the mathematical ideas, on which the GNFS was developed, as well as a sequential implementation of the basic version of the algorithm. C++ was the language of choice. The implementation took place in collaboration with my colleague and dear friend Christos Bakogiannis, where as part of his master thesis, a distributed implementation of the algorithm using Message Passing Interface (MPI) was also developed. The source code of the implementations is publicly available and can be found online at http://kmgnfs.cti.gr.
It is presumed that the reader is familiar with basic concepts of number theory, algebraic number theory and linear algebra.
|
3 |
Square Forms Factoring with SievesClinton W Bradford (10732485) 05 May 2021 (has links)
Square Form Factoring is an <i>O</i>(<i>N</i><sup>1/4</sup>) factoring algorithm developed by D. Shanks using certain properties of quadratic forms. Central to the original algorithm is an iterative search for a square form. We propose a new subexponential-time algorithm called SQUFOF2, based on ideas of D. Shanks and R. de Vogelaire, which replaces the iterative search with a sieve, similar to the Quadratic Sieve.
|
Page generated in 0.0636 seconds